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Constraint Programming
is about

modeling and solving

Problems under Constraints

(images by John Slaney from the G12 Visualisation Project)
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https://users.cecs.anu.edu.au/~jks/G12/


Certainly, the first Problem you Solved!

This is a matching problem !
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Quite often, you face Optimization Problems!

A witch can elaborate two kinds of magic potions:

• the former for inspiring love
• the latter for restoring youth

Theses potions are composed of dribble of toads (Ut), wings of dragons
(Ud) and powder of spiders (Us), with the following proportions:

• 1 potion for love requires 3 Ut , 1 Ud and 1 Us

• 1 potion for youth requires 2 Ut , 3 Ud and 2 Us
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Quite Often, Optimization Problems!

The witch possesses 800 Ut , 700 Ud and 400 Us . Selling magic potions
brings in:

• 4 crowns for each love potion

• 5 crowns for each youth potion

Considering her available ingredients, how many love potions (x) and
youth potions (y) should be prepared by the witch in order to optimize
her benefit?

Maximize : 4x + 5y

such that:

 3x + 2y ≤ 800
x + 3y ≤ 700
x + 2y ≤ 400
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Your first PyCSP3 Model

from pycsp3 import *

# x is the number of magic love potions
x = Var(range (400))

# y is the number of magic youth potions
y = Var(range (400))

satisfy(
3*x + 2*y <= 800,
x + 3*y <= 700,
x + 2*y <= 400

)

maximize(
4*x + 5*y

)
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This is an Integer Linear Program!

What is the point of using CP?
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Solving Constrained Combinatorial Problems

With a focus on integer variables, several paradigms coming from:

• Operations Research : Integer Linear Programming and Local Search

• Artificial Intelligence : Constraint Programming, Satisfiability
Testing and Answer Set (Logic) Programming

ILP

CP

SAT

LS

ASP

OR

AI

Important:

• each paradigm has its strengths and weaknesses

• one asset of CP: high level of declarativity/flexibility
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You use Constraint Programming every day!

Sudoku

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6
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You use Constraint Programming every day!

Sudoku

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

Fill the empty cells with values in 1..9

While considering that:

• each row must contain different numbers

• each column must contain different
numbers

• each bloc (3×3 square) must contain
different numbers
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You use Constraint Programming every day!

Sudoku

2 5 1 9
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3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

Solution: assignment of a value to each
variable such that no constraint is violated
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A Sudoku puzzle is a very simple (instance
of a) Constraint Satisfaction Problem



You use Constraint Programming every day!
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Solving the puzzle with CP means:

• reasoning with constraints in order to
prune values in variable domains

• assigning variables in order to construct
solutions
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Sudoku in Practice

Sudoku grids in: https://www.cril.fr/˜lecoutre/data/sudoku.txt

�Modeling/Solving in just 10’

Let us start!
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https://www.cril.univ-artois.fr/~lecoutre/data/sudoku.txt


Constraint Programming

Constraint Programming (CP) is a general framework proposing simple,
general and efficient algorithmic solutions to problems under constraints.

CP is attractive because there is a clear separation between:

• on the one hand, its formalism that makes easy the representation of
many problems

• on the other hand, a large pool of algorithms and heuristics to find
solutions
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Modeling

There are then two main stages with CP:

1 In a first stage, called modeling, the problem must be formally
represented by means of variables, constraints, and possibly objective
functions.

Ideally, this stage is purely declarative, but in practice a limited
process of programming may be required (e.g., with a logic or object
language).

17



Solving

2 In a second stage, called solving, the problem modelled by the user
must be tackled by a software tool in order to automatically obtain
one solution, all solutions, an optimal solution, . . .

18



Constraint Satisfaction

The Constraint Satisfaction Problem (CSP) resides at the core of
constraint programming. An instance of this problem is represented by a
constraint network (CN).

CSP SAT

Note that SAT is closely related to CSP:

• variables are Boolean

• constraints are clauses (disjunctions of variables and their negations)

19



Untractability

No polynomial algorithm is known for both decision problems CSP and
SAT.

Stephen Cook showed that SAT is a
NP-complete problem

Remark.
In practice, people try to find efficient algorithms for a large range of
problems by exploiting their structures. This is a motivating challenge.
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CP Success Stories: CP Has Landed on the Comet

On June 13th 2015, the robot-lab Philae woke up on the comet
67P/Churyumov-Gerasimenko to resume a series of experiments.

Some plans executed by Philae are modelled and solved using constraint
programming technology. Several dedicated algorithms were developed by
the Operations Research & Constraints group of the LAAS-CNRS lab.
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CP Success Stories: Pythagorean Triples Problem

Problem: Can the set N = {1, 2, . . . , } of natural numbers be divided into
two parts, such that no part contains a triple (a, b, c) with a2 + b2 = c2?

A prize for the solution was offered by Ronald Graham over two decades
ago.

This problem has been solved by a hybrid SAT approach, employing both
look-ahead and CDCL solvers.

This is the largest computed-aided Mathematics proof (200TB) ever
presented in the literature.
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CP Success Stories: Music in CP

Constraint programming techniques applied to contemporary music
composition

Two illustrative applications (with the courtesy of Charlotte Truchet,
LINA).

1 A problem on harmony (Georges Bloch). Given a fixed chord, we
have the following constraints:

• minimize EstradaDistance(chord[i], FixedChord)
• minimize GeorgesDistance(VF(chord[i]), VF(chord[i+1]))

2 Asynchronous rhythms (Mauro Lanza). Each pattern is played
repetitively on one voice.

• Variables: rhythmical patterns of fixed durations d1, . . . , dn.
• Constraints: no simultaneous onsets between two voices, for a given

duration D.
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Classical CP Applications: Flow Shop Scheduling

Given n machines and m jobs, knowing that:
• each job requires exactly n operations to be executed
• the ith operation of a job must be executed on the ith machine
• no machine can perform more than one operation simultaneously
• for each operation of each job, execution time is specified

Find the best schedule, i.e. the one with the shortest possible total job
execution makespan.

Figure: Example of (no-wait) flow-shop scheduling with 5 jobs on 2 machines A
and B. A comparison of total makespan is given for two different job sequences.
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Classical CP Applications: Car Sequencing

Given an assembly line for producing cars with various options, knowing
that:

• different stations install different options

• stations can handle at most a certain percentage of the passing cars

• cars requiring a certain option must not be bunched together

Find a production order respecting the capacity constraints of the
stations.

27



Classical CP Applications: Nurse Rostering

Given hospital shifts to be taken by nurses, knowing that:

• nurses have various qualifications

• the hospital must respect some working/resting patterns

• each hospital service has some needs

Find an optimal assignment of nurses to shifts.

28



Classical CP Applications: Vehicle Routing

Given orders made by some costumers, knowing that:

• a fleet of vehicles is available

• a depot stores products

Find the best route of each delivery vehicle.

29



Classical CP Applications: Container Ship Loading

Given containers to be loaded on some ships, knowing that:

• some cranes are available

• there are specific requests on containers to be loaded

Find the fastest loading schedule

30



No CP used here!
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Classical CP Applications

Many other application domains:

• Configuration

• Bio-informatics

• Planning

• Airport Scheduling

• Model Checking

• Data Mining

• . . .
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Integrated Constraint Programming Suite

Suite composed of three components:

• PyCSP3, a Python-based modeling library (pycsp.org)

• XCSP3, a format preserving the structure of problem instances

• ACE, a constraint solver in Java

Interest of this approach:

• fast modeling with a dedicated Python interface

• easy reading and understanding of the format

• tight control of solving mechanisms

Intelligibility at every stage of the modelling and solving process

34
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Modeling Languages/Libraries

Modeling languages/libraries can be used to represent problems, using
some form of control and abstraction.

Typically, a model captures a family of problem instances, by referring to
some parameters representing the data. Building a model for a problem
involves:

1 identifying the parameters, i.e., the structure of the data

2 writting the model, by taking the parameters into account, and
using an appropriate (high-level) language

Once we have a model, we still have to provide the effective data for
each specific instance to be treated.

35
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Let us illustrate this with the academic problem “Warehouse Location”



Warehouse Location in Practice

Illustrative data in: https://www.cril.fr/˜lecoutre/data/opl-example.json

�Modeling/Solving in just 20’

Let us start!

36
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Modeling Languages and Formats

Modeling
Languages/Libraries

Intermediate
Format

Flat
Formats

+

−

OPL, MiniZinc, Essence, PyCSP3, ...

XCSP3

XCSP 2.1, FlatZinc, wcsp

A
b
straction

www.xcsp.org

37
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A Complete Modeling/Solving Toolchain

Model PyCSP3

(Python 3)

Data
(JSON)

Compiler

XCSP3 Instance
(XML)

ACE Choco Mistral Picat OR-Tools ...

38



Mainstream Technologies

The complete Toolchain PyCSP3 + XCSP3 has many advantages:

• Python, JSON, and XML are robust mainstream technologies

• specifying data with JSON guarantees a unified notation, easy to
read for both humans and machines

• writing models with Python 3 avoids the user learning a new
language

• representing problem instances with coarse-grained XML guarantees
compactness and readability

Remark.
At the intermediate level, using JSON instead of XML is possible but has
some (minor) drawbacks.
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Popular Constraints

Popular constraints are those that are:

• often used when modeling problems

• implemented in many solvers

Remark.
XCSP3-core contains popular constraints over integer variables, classified
by families.
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XCSP3-core

Constraints over Integer Variables

Generic Constraints

intension, extension

Language-based Constraints

regular, mdd

Comparison-based Constraints

allDifferent, allEqual

ordered, lex, precedence

Counting and Summing Constraints

sum (linear)

count (capturing atLeast, atMost,exactly, among)

nValues, cardinality

Connection Constraints

minimum, maximum

element, channel

Packing and Scheduling Constraints

noOverlap (capturing disjunctive and diffn)

cumulative, binPacking, knapsack

42



XCSP3-core
Constraints over Integer Variables

Graph Constraints

circuit

Elementary Constraints

clause, instantiation

Meta-Constraints

slide

And also expressions coming from possible logical combinations of
constraints in PyCSP3:

If(
q < z,
Then=h[p][y[p][q]] != h[q][y[p][q]],
Else=y[p][q] == 0

) for p, q in combinations(k, 2)

Note that XCSP3-core is;

• sufficient for representing a wide range of problems (instances)

• used in XCSP3 Solver Competititons
43
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Generic Constraint intension

Any constraint given by a Boolean expression (predicate) built from:

• variables,

• constants (integers),

• arithmetic, relational, set and logical operators.

Example.

• x > 2

• x ≤ y + 1

• |x − y | = z − w

• x + y ∗ 12 + z/2 = 5

• x + y > 3 ∨ x ∗ z = w

Remark.
Above, the examples are given in “pure” mathematical forms. For
PyCSP3, operators are those of Python.
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Operators used by PyCSP3

Arithmetic Operators

+ addition
- subtraction
* multiplication
// integer division
% remainder
** power

Relational Operators

< Less than
<= Less than or equal
>= Greater than or equal
> Greater than
! = Different from
== Equal to

Set Operators

in membership
not in non membership

Logical Operators

∼ logical not
| logical or
& logical and
ˆ logical xor
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Illustration

Mathematical forms:

• x > 2

• x ≤ y + 1

• |x − y | = z − w

• x + y ∗ 12 + z/2 = 5

• x + y > 3 ∨ x ∗ z = w

• x + y > 3 ∨ x ∗ z = w

PyCSP3 forms:

• x > 2

• x <= y + 1

• abs(x − y) == z − w

• x + y ∗ 12 + z//2 == 5

• (x + y > 3) | (x ∗ z == w)

• either(x+y > 3, x∗z == w)

When compiling from PyCSP3 to XCSP3, we obtain functional forms:

<intension> gt(x,2) </intension>
<intension> le(x,add(y,1)) </intension>
<intension> eq(dist(x,y),sub(z,w)) </intension>
<intension> eq(add(x,mul(y,12),div(z,2)),5) </intension>
<intension> or(gt(add(x,y),3),eq(mul(x,z),w)) </intension>
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Generic Constraint extension

With X a sequence of variables and T a set of tuples,

• X ∈ T is a positive table constraint,

• X /∈ T is a negative table constraint.

Remark.
Tuples are respectively called supports and conflicts in positive and
negative tables.

We can build:

• ordinary tables that contain ordinary tuples

• short tables that contain short tuples, i.e., tuples involving the
symbol ’*’

• and even compressed tables, and smart tables (not in XCSP3-core)
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Generic Constraint extension

The table constraint:

x y z

0 0 0
0 0 1
0 0 2
1 1 1
1 2 2
2 2 0

is written in PyCSP3 as:

(x,y,z) in {(0,0,0),(0,0,1),(0,0,2),(1,1,1),(1,2,2),(2,2,0)}
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Generic Constraint extension

If the domain of the variable z is {0, 1, 2}, can we compress?

x y z

0 0 ∗
1 1 1
1 2 2
2 2 0

which gives in PyCSP3:

(x,y,z) in {(0,0,ANY),(1,1,1),(1,2,2),(2,2,0)}

and gives in XCSP3:

<extension>
<list> x y z </list>
<supports> (0,0,*)(1,1,1)(1,2,2)(2,2,0) </supports>

<extension>
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Understanding Constraints

For each type of constraints (around 20 basic ones):

• a dedicated Jupyter notebook

• some Jupyter notebooks building models (step by step) involving it

For example:

• https://pycsp.org/documentation/constraints/Cumulative

• https://pycsp.org/documentation/constraints/Cardinality

50
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Illustration: Champions League

Matchday 1

...

Matchday 2

...

Matchday 3

...

...
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As a journalist, you can exhibit some crazy scenarii:

• What is the highest number of points that can be reached by a team
without being qualified

• in the first 8 teams
• in the first 24 teams

• What is the lowest number of points that can be reached by a team
while being qualified

• in the first 8 teams
• in the first 24 teams

• ...
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Champions League in Practice

Tournament data in: https://www.cril.fr/˜lecoutre/data/2024.json

�Modeling/Solving in just 30’

Let us start!
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schedule , position = data # position is 9 or 25 for example

nWeeks , nMatchesPerWeek , nTeams = len(schedule), len(schedule [0]), len(schedule [0]) * 2

assert nWeeks == 8 and nTeams == 36 # for the moment

WON , DRAWN , LOST = results = range (3)

# x[w][k] is the result of the kth match in the wth week

x = VarArray(size=[nWeeks , nMatchesPerWeek], dom=results)

# y[w][i] is the number of points won by the ith team in the wth week

y = VarArray(size=[nWeeks , nTeams], dom={0, 1, 3})

# z[i] is the number of points won by the ith team

z = VarArray(size=nTeams , dom=range(3 * nWeeks + 1))

# the target team that must be ranked at the specified position

target = Var(dom=range(nTeams ))

# the number of teams with a score better than the target team

better_target = Var(dom=range(nTeams ))

# the number of teams with a score equal to the target team

equal_target = Var(dom=range(nTeams ))

satisfy(

# computing points won for every match

[

(x[w][k], y[w][i], y[w][j]) in {(WON , 3, 0), (DRAWN , 1, 1), (LOST , 0, 3)}

for w in range(nWeeks) for k, (i, j) in enumerate(schedule[w])

],

# computing the number of points of each team

[z[i] == Sum(y[:, i]) for i in range(nTeams)],

... TODO

)

maximize(

# maximizing the number of points of the target team

z[target]

)
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Filtering Domains by means of Constraints

Each constraint represents a “sub-problem” from which some
inconsistent values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Several levels/types of filtering can be defined. The most popular are:

• AC (Arc Consistency): all inconsistent values are identified and
deleted

• BC (Bounds Consistency): inconsistent values corresponding to the
bounds of the domains are identified and deleted

Warning.
For non-binary constraints, AC is often denoted by GAC (but not in this
presentation).
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Example.

Constraint x < y with

• dom(x) = 10..20

• dom(y) = 0..15

After AC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

After BC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

Constraint w + 3 = z with

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}

After AC filtering, we obtain:

• dom(w) = {1, 5}
• dom(z) = {4, 8}

After BC filtering, we obtain:

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}
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Generic AC Algorithm

Definition
An AC algorithm for a constraint c is an algorithm that removes all
values that are arc-inconsistent on c (i.e., values that never appear in
solutions of c); the algorithm is said to enforce/establish AC on c .

Here is an AC algorithm that can be used in theory with any constraint c .

Algorithm 1: filterAC(c : Constraint)

for each variable x ∈ scp(c) do
for each value a ∈ dom(x) do

if ¬ seekSupport(c , x , a) // function to be implemented

then
remove a from dom(x)
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Generic AC Algorithm
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An AC algorithm for a constraint c is an algorithm that removes all
values that are arc-inconsistent on c (i.e., values that never appear in
solutions of c); the algorithm is said to enforce/establish AC on c .

Here is an AC algorithm that can be used in theory with any constraint c .

Algorithm 3: filterAC(c : Constraint)

for each variable x ∈ scp(c) do
for each value a ∈ dom(x) do

if ¬ seekSupport(c , x , a) // function to be implemented

then
remove a from dom(x)
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AC Filtering for allDifferent

Proposition
A constraint allDifferent(X ) is AC iff ∀X ′ ⊆ X ,

|dom(X ′)| = |X ′| ⇒ ∀x ∈ X \ X ′, dom(x) = dom(x) \ dom(X ′)

where dom(X ′) = ∪x′∈X ′dom(x ′)

Remark.
A subset X ′ of variables such that |dom(X ′)| = |X ′| is called a Hall set.

Example.
The set of variables {x , y , z} such that:

• dom(x) = {a, b},
• dom(y) = {a, c}
• and dom(z) = {b, c}

is a Hall set (of size 3).
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AC Filtering for allDifferent

Example.
For a Sudoku block, a constraint allDifferent(w , x , y , z) :

3

41

8

6
w

x y

z

dom(w) = {2, 5, 7, 9}

dom(z) = {2, 5, 7, 9}
dom(y) = {2, 5, 7, 9}

dom(x) = {2, 5, 7, 9}

Can we filter?
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Identification of Hall sets

The same constraint as previously, but variables have different domains.

Example.
For a Sudoku block, a constraint allDifferent(w , x , y , z) :
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dom(z) = {9}
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Constraint Propagation

Definition
A constraint network P is AC iff each constraint of P is AC.

Definition
Computing the AC-closure of a constraint network P is the fact of
removing all arc-inconsistent of P (when considering any constraint of P).

The process that involves executing filtering operations, by solliciting
constraints in turn, until a fixed point is reached is called constraint
propagation.
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Search Space

For a given CN P such that:

• n is the number of variables

• d is the greatest domain size

• e is the number of constraints

• r is the greatest constraint arity

What is the complexity of a Generate and Test approach?

Answer: O(dner), assuming that a constraint check is O(r)
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Exponential Growth

Suppose that:

• the complexity is only O(2n)

• 109 complete instantiations can be processed any new second

n 2n Processing Time

10 around 103 around 1 nanosecond
20 around 106 around 1 millisecond
30 around 109 around 1 second
40 around 1012 around 16 minutes
50 around 1015 around 11 days
60 around 1018 around 32 years
70 around 1021 around 317 centuries
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Search Tree

Most of the time, the search space can be perceived as a search tree.
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Pruning the Search Tree

Constraint Inference (Filtering/Propagation) can help us!
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Pruning the Search Tree

Finding a solution may become realistic in a reduced search tree.
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Complete Exploration

Classical approach

• depth-first traversal

• backtracking mecanism

• interleaving of
• decisions
• propagations

Remark.
Other strategies exist:

• breadth-first traversal

• limited discrepancy search (LDS)

• large neighborhood search (LNS)

• ...
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Search Tree
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Search-guiding Heuristics

Important:

• The order in which variables are assigned by a backtracking search
algorithm has been recognized as a key issue for a long time.

• Using different search ordering heuristics to solve a CSP instance
can lead to drastically different results in terms of efficiency.

• Simply introducing some form of randomization to a given search
ordering heuristic may exhibit a large variability in performance.

Goal of such heuristics: to minimize the size of the search trees

Typically, when conducting a backtrack search, we sollicit:

• a variable ordering heuristic to select the next variable x to be
assigned

• a value ordering heuristic to select the value a to assign to x
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Search-guiding Heuristics

General rules to adopt for efficieny:

1 It is better to assign first the variables that belong to the hard parts
of the problem. Fail-first principle:
“To succed, try first where you are most likely to fail”

2 To find quickly a solution, it is better to assign first the value that
most likely belongs to a solution (Succeed-first or Promise principle).

3 The initial variable/value choices are particularly important.
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ACE, a classical CP Solver

ACE is a competitive solver because of

• restarting search frequently

• recording nogoods from restarts

• using constraint/variable weighting for selecting variables
• wdeg/dom and wdegcacd

• frba/dom
• pick/dom

• reasoning from last conflict(s)

• using solution(-based) phase saving
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Towards Robust Search

Important issue: get complementary search mechanisms/heuristics.

Currently, we have identified three pivotal moments for collecting
information about conflicts (and to guide search):
• early (E), as in frba/dom
• midway (M), as in pick/dom
• late (L), as in wdeg/dom and wdegcacd

•

•

v = a

w = b

⊥

w ̸= b

•
x = ax = a

⊥

Queue
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Towards Robust Search

Showing the benefit of using complementary mechanisms/heuristics at
the 2024 XCSP3 competition, by comparing two versions of ACE:

• ACE, with its default behaviour:
• wdegcacd for selecting variables
• first for selecting values

• ACE-rr (mix), which exploits in a “run-robin” mode:
• four variable ordering heuristics: pick/dom, wdeg/dom, frba/dom,

wdegcacd

• three basic value-ordering heuristics: first, last, rand

Of course, it is well-known that diversifying search is essential. See:

• CP-SAT

• Gurobi

• LocalSolver

• . . .
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Track CSP at the 2024 XCSP3 Competition

Observations:

• ACE-rr (mix) clearly outperforms ACE (default),

• ACE-rr (mix) becomes competitive with Picat and CPMpy ortools
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Track COP at the 2024 XCSP3 Competition

Observations:

• ACE-rr (mix) clearly outperforms ACE (default) (and Picat)

• Picat and CPMpy ortools are far better in terms of proof

• ACE-rr (mix) is competitive with CPMpy ortools in terms of search
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ACE in Practice

FAPP (https://github.com/xcsp3team/PyCSP3-models/tree/main/realistic/FAPP).
Compare (and also aux-02-0250):

• java ace FAPP-aux-01-0200.xml

• java ace FAPP-aux-01-0200.xml -rr

• java ace FAPP-aux-01-0200.xml -rr -tomdd

See also slides by Simon de Givry at CP’20 tutorials

Cargo (https://github.com/xcsp3team/PyCSP3-models/tree/main/realistic/Cargo).
Compare:

• java ace Cargo-04-1s-626.xml

• java ace Cargo-04-1s-626.xml -varh=PickOnDom

• java ace Cargo-04-1s-626.xml -varh=FrbaOnDom

• java ace Cargo-04-1s-626.xml -rr

• java ace Cargo-04-1s-626.xml -varh=Dom
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Practical CP

Making CP very practical is concretized by:

• Zero installation from using Colab to start

• Easy installation (’pip install’, Jupyter notebooks, etc.) to continue

• Strong intelligibility at each step of the modeling/solving process

• Complete guide with a large number of examples
(https://arxiv.org/abs/2009.00326) ; Guide for Version 2.5
expected in August 2025

• 400 (non trivial) models/problems available:
https://pycsp.org/models/

• Possible comparisons by analysing the results of XCSP3

competitions (https://xcsp.org/competitions/)
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Practical CP

Imagine that:

• your are a puzzle fanatic who wants to show off on the internet
(JaneStreet, LinkedIn, . . . )

• you are a journalist at l’equipe 21 who wants to exhibit crazy
scenarii about the Champions League

• you are the conference organizer of ROADEF’42, and you have to
build the complex programme of the conference

• you are a music composer who wants to deal with Tiling Rhythmic
Canons, that are purely rhythmic contrapuntal compositions

• you are a vessel captain who has to load different cargoes to the
available tanks of your vessel

CP is here for you!
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Last Illustration: Tank Allocation for Liquid Bulk Vessels

You have to put different cargoes (volumes of chemical products to be
shipped by the vessel) to the available tanks of the vessel. You have to:

• prevent chemicals from being loaded into certain types of tanks;

• prevent some pairs of cargoes to be placed next to each other.

To minimize the inconvenience of tank cleaning, an ideal loading plan
should maximize the total volume of unused tanks (i.e. free space).

82



Layout of the Vessel

The characteristics of this (real) instance (coming from a major chemical
tanker company):

• there are 20 cargoes with volumes ranging from 381 to 1527 tons;

• the vessel has 34 tanks with capacities from 316 to 1017 tons;

• there are 5 pairs of cargoes that cannot be placed into adjacent
tanks;

• each tank has between 1 to 3 cargoes that cannot be assigned to it.
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Tank Allocation in Practice

Data in: https://www.cril.fr/ lecoutre/data/chemical.json

�Modeling/Solving in just 15’

Let us start!
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Model for Tank Allocation

volumes , conflicts , tanks = data

T = conflicts + [(v, u) for u, v in conflicts]

capacities , impossible_cargos , neighbours = zip(*tanks)

nCargos , nTanks = len(volumes), len(tanks)

DUMMY_CARGO = nCargos

# x[i] is the cargo (type) of the ith tank (DUMMY_CARGO , if empty)

x = VarArray(size=nTanks , dom=range(nCargos + 1))

satisfy(

# allocating a compatible cargo to each tank

[x[i] not in impossible_cargos[i] for i in range(nTanks)],

# ensuring no adjacent tanks containing incompatible cargo

[(x[i], x[j]) not in T for i in range(nTanks) for j in neighbours[i]]

# ensuring each cargo is shipped

[

Sum(capacities[i] * (x[i] == cargo) for i in range(nTanks )) >= volumes[cargo]

for cargo in range(nCargos)

]

)

maximize(

# maximizing free space

Sum(capacities[i] * (x[i] == DUMMY_CARGO) for i in range(nTanks ))

)
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