
Torch-Uncertainty Overview

Gianni Franchi & Adrien Lafage & Firas Gabetni & Olivier
Laurent

July 1, 2025

Introduction

Link to Example Notebook

▶ Focus: Small-scale image classification using the MNIST
dataset.

▶ Dataset: MNIST - 70,000 grayscale images of handwritten
digits (0 to 9).

▶ Goal: Classify the images into their respective digits.
▶ Metrics:

▶ Accuracy
▶ Brier Score
▶ Calibration Error

https://colab.research.google.com/drive/1EDFNrhWDFWW5z376HBMvAQuxieOMkLLP?usp=sharing

Key Libraries

▶ PyTorch Lightning: Simplifies training and evaluation.

▶ TorchUncertainty: Tools to quantify Deep Learning models’
uncertainty.

▶ TorchVision: For dataset and transformations.

Visualizing In-Distribution and Out-of-Distribution Data

▶ In-Distribution Data: MNIST

▶ OOD Data: FashionMNIST

Figure: MNIST Figure: FashionMNIST

Uncertainty Evaluation

▶ Accuracy

▶ Negative log-likelihood
▶ OOD Detection:

▶ AUPR, AUROC (Higher = better).
▶ FPR95 (Lower = better).

▶ Calibration:
▶ Expected Calibration Error (ECE).
▶ Adaptive ECE.

Setting up a simple LeNet: Part 1

▶ Initialize the model using PyTorch.

1 from torch import nn

2

3 class LeNet(nn.Module):

4 def __init__(self, in_channels: int, num_classes: int):

5 super().__init__()

6 self.conv1 = nn.Conv2d(

7 in_channels=in_channels, out_channels=6,

kernel_size=(5,5)↪→
8)

9 self.conv2 = nn.Conv2d(

10 in_channels=6, out_channels=16, kernel_size=(5,5)

11)

12 self.fc1 = nn.Linear(in_features=256, out_features=120)

13 self.fc2 = nn.Linear(in_features=120, out_features=84)

14 self.fc3 = nn.Linear(in_features=84,

out_features=num_classes)↪→
15

16 self.activation = nn.ReLU()

17 self.pooling = nn.AdaptativeAvgPooling2d((4,4))

Setting up a simple LeNet: Part 2

▶ Define the forward() function.

1 from torch import nn, Tensor

2 import torch.nn.functional as F

3

4 class LeNet(nn.Module):

5 # ...

6 def forward(self, x: Tensor) -> Tensor:

7 out = self.activation(self.conv1)

8 out = F.max_pool2d(out, 2)

9 out = self.activation(self.conv2)

10 out = F.max_pool2d(out, 2)

11 out = self.pooling(out)

12 out = out.flatten(1)

13 out = self.activation(self.fc1(out))

14 out = self.activation(self.fc2(out))

15 return self.fc3(out)

16

17 model = LeNet(in_features=1, num_classes=10)

Setting up Deep Ensembles

▶ Ensembles of LeNet for higher accuracy and better
uncertainty estimation.

▶ Leverage the model wrapper from TU: deep ensembles().

1 from torch_uncertainty.models import deep_ensembles

2 from torch_uncertainty.models.lenet import lenet

3

4 # Create ensemble of 4 LeNet models

5 model = deep_ensembles(

6 lenet(in_channels=1, num_classes=10),

7 num_estimators=4,

8 task="classification",

9 reset_model_parameters=True,

10)

Setting up Packed-Ensembles

▶ Efficient ensembling of LeNet models for lower memory
consumption.

1 from torch_uncertainty.models.lenet import packed_lenet

2 # Create a Packed LeNet ensemble of 4 networks and a width

expansion factor 2.↪→
3 model = packed_lenet(

4 in_channels=1, num_classes=10, num_estimators=4, alpha=2,

5)

▶ Under the hood, we have only replaced the Conv2d and
Linear layers by the PackedConv2d and PackedLinear

layers (see example below). The forward method is left
unchanged.

1 from torch_uncertainty.layers import PackedConv2d, PackedLinear

2

3 self.conv2 = PackedConv2d(

4 in_channels=6, out_channels=16, kernel_size=(5,5),

5 num_estimators=4, alpha=2,

6)

Setting up a Bayesian Neural Network

▶ Initialize a Bayesian LeNet which uses the layers:
BayesLinear and BayesConv2d.

1 from torch_uncertainty.models.lenet import bayesian_lenet

2

3 # Create bayesian LeNet model that uses 16 samples.

4 model = bayesian_lenet(

5 in_channels=1, num_classes=10, num_samples=16,

6)

▶ Under the hood, we have only replaced the Conv2d and
Linear layers by the BayesConv2d and BayesLinear layers
(see example below). The forward method is left unchanged.

1 from torch_uncertainty.layers import BayesConv2d, BayesLinear

2

3 self.conv2 = BayesConv2d(

4 in_channels=6, out_channels=16, kernel_size=(5,5),

5)

A single training pipeline

▶ Train your models on classification tasks using TUTrainer

and ClassificationRoutine.

1 from torch_uncertainty.utils import TUTrainer

2 from torch_uncertainty.routines import ClassificationRoutine

3

4 # Create the trainer that will handle the training

5 trainer = TUTrainer(accelerator=device, max_epochs=max_epochs)

6

7 # The routine is a wrapper of the model that contains the

training logic with the metrics, etc↪→
8 routine = ClassificationRoutine(

9 num_classes=10,

10 model=model,

11 loss=nn.CrossEntropyLoss(),

12 optim_recipe=optim_recipe(model),

13 eval_ood=True,

14 is_ensemble=True # False if not

15)

16

17 # In practice, avoid performing the validation on the test set

18 trainer.fit(routine, train_dataloaders=train_dl,

val_dataloaders=test_dl)↪→

Define Post-Processing methods

▶ ClassificationRoutine allows to pass post-processing
methods.

▶ Example: Laplace approximation for uncertainty
quantification.

1 from torch_uncertainty.post_processing import LaplaceApprox

2

3 laplace_approx = LaplaceApprox(

4 task="classification",

5 weight_subset="last_layer",

6 hessian_struct="kron",

7 pred_type="glm",

8 link_approx="probit",

9 batch_size=256,

10)

11

12 routine = ClassificationRoutine(

13 # ...

14 post_processing = laplace_approx,

15)

Results - LeNet

Figure: Performance on the evaluation set

Results - Deep Ensembles LeNet

Figure: Performance on the evaluation set

Results - Packed-Ensembles LeNet

Figure: Performance on the evaluation set

Results - Bayesian LeNet

Figure: Performance on the evaluation set

Results - Laplace Approximation on LeNet

Figure: Performance on the evaluation set

Torch-Uncertainty Overview: UQ Methods

▶ Deep Evidential (Regression & Classification)

▶ Beta NLL in Deep Regression

▶ Variational Inference BNN

▶ Deep Ensembles

▶ Monte-Carlo Dropout

▶ Stochastic Weight Averaging (SWA)

▶ Stochastic Weight Averaging Gaussian (SWAG)

▶ CheckpointEnsemble

▶ SnapshotEnsemble

▶ BatchEnsemble

▶ Masksembles

▶ MIMO

▶ Packed-Ensembles

▶ LPBNN

▶ Conformal Prediction

▶ OOD Detection Criteria

Torch-Uncertainty Overview: Metrics

▶ Classification
▶ Proper Scores: BrierScore, CategoricalNLL.
▶ Out-of-Distribution Detection: AURC, FPRx, FPR95.
▶ Selective Classification: AUGRC, RiskAtxCov, RiskAt80Cov, CovAtxRisk,

CovAt5Risk.
▶ Calibration: AdaptativaCalibrationError, CalibrationError.
▶ Others: GroupingLoss.

▶ Regression: DistributionNLL, Log10, MeanAbsoluteErrorInverse,
MeanGTRelativeAbsoluteError, MeanGTRelativeSquaredError,
MeanSquaredErrorInverse, MeanSquaredLogError, SILog,
ThresholdAccuracy.

▶ Segmentation: MeanIntersectionOverUnion

Useful links

Example Notebook

TorchUncertainty

GitHub Preprint

Thanks for your attention!

https://colab.research.google.com/drive/1EDFNrhWDFWW5z376HBMvAQuxieOMkLLP?usp=sharing
https://github.com/ENSTA-U2IS/torch-uncertainty
https://hal.science/hal-05115517v1/document

Uncertainty Quantification in Deep Learning

Uncertainty Quantification in Deep Learning

Gianni FRANCHI

U2IS, ENSTA Paris

Tutoriel PFIA 2025

1 / 129

Uncertainty Quantification in Deep Learning

Planning of the tutorial

Planning of the tutorial

90 min - Sections 1 to 3
90 min - Sections 4 to 5
30 min - TorchUncertainty demo
30 min - Question Answering

2 / 129

Uncertainty Quantification in Deep Learning

Tutorial’s organisers

Gianni Franchi Olivier Laurent Adrien Lafage Firas Gabetni

3 / 129

Uncertainty Quantification in Deep Learning

Plan

1 Sources of Uncertainty

2 Types of Uncertainty

3 Why do we need to Quantify Uncertainty

4 Uncertainty Quantification Strategies

5 Uncertainty Quantification Strategies
Ensemble Methods
BNN Methods
Uncertainty criteria

6 Evaluating Uncertainty Quantification in DNNs

7 Conclusions and applications

8 Bibliography

4 / 129

Uncertainty Quantification in Deep Learning
Sources of Uncertainty

Uncertainty: The Physicist’s Perspective

Foundation in Physics

Physicists seek to model and understand complex phenomena, but
its roots are deeply tied to the fundamental uncertainties present in
the physical world.
Physics provides the groundwork for our understanding of natural
processes, emphasizing the need to deal with uncertainty and
variability in experimental observations.

Linking Experiments to Models

Physicists often perform experiments to collect data and formulate
models that describe the behavior of the physical systems.
These models inherently carry uncertainties due to measurement
errors, experimental conditions, and the stochastic nature of certain
phenomena.

5 / 129

Uncertainty Quantification in Deep Learning
Sources of Uncertainty

Example with Hooke’s Law

Hooke’s Law describes the
behavior of materials when
subjected to stretching or
compressing forces.
Named after Robert Hooke, a
17th-century physicist.
Fundamental principle in
elasticity.

F = −k ·∆L (1)

F is the restoring force.
k is the spring constant.
∆L is the displacement from
the equilibrium position.

Linear Elastic Region

Hooke’s Law is valid within the linear elastic region of a material.
Beyond this region, permanent deformation or failure may occur.

6 / 129

Uncertainty Quantification in Deep Learning
Sources of Uncertainty

Example with Hooke’s Law

F = −k ·∆L (2)

Figure: Experiment: Find the spring constant k

7 / 129

Uncertainty Quantification in Deep Learning
Sources of Uncertainty

Uncertainty: The Physicist’s Perspective

Sources of Uncertainty

Parameter Uncertainty: Many physical models involve parameters
that may not be precisely known. Uncertainty in these parameters
can stem from variations in material properties, manufacturing
tolerances, or imprecise calibration of instruments.
Initial Conditions Measurement: The initial state of a system is
often a critical factor in physical models. Uncertainty in the initial
conditions can arise due to measurement errors or incomplete
knowledge of the system’s state.
Dynamic Measurement Error: Experimental measurements are
prone to errors, whether they are due to limitations in measurement
instruments, environmental conditions, or human factors.
Model Simplifications: Physical models often involve
simplifications and assumptions to make the mathematical
representation more tractable. These simplifications may not
perfectly capture the complexity of the real-world system.

8 / 129

Uncertainty Quantification in Deep Learning
Sources of Uncertainty

Uncertainty: The Physicist’s Perspective

Sources of Uncertainty

Numerical Approximations: When using numerical methods to
solve physical equations, the choice of discretization methods and
grid resolution introduces numerical errors. These errors can
propagate and amplify, leading to uncertainty in the model results.
Model Formulation: The choice of mathematical equations and
the model structure itself introduces uncertainty. Different
formulations may yield different predictions, and selecting the most
appropriate model can be challenging.
Stochastic Nature of Physical Processes: Some physical
processes are inherently stochastic (random) rather than
deterministic. Quantum mechanics, for example, involves inherent
uncertainties at the fundamental level.

9 / 129

Uncertainty Quantification in Deep Learning
Sources of Uncertainty

Sources of Uncertainty in Machine Learning

Uncertainty in Predictions

Machine learning models, while powerful, are not immune to
uncertainty.
Understanding and quantifying sources of uncertainty is crucial for
model reliability and decision-making.

Key Question

What are the primary sources of uncertainty in machine learning,
and how do they impact model performance and interpretability?

10 / 129

Uncertainty Quantification in Deep Learning
Sources of Uncertainty

Sources of Uncertainty in Machine Learning

11 / 129

Uncertainty Quantification in Deep Learning
Sources of Uncertainty

Sources of Uncertainty in Machine Learning

Data based
Data Quality: Inaccurate or incomplete training data can introduce
uncertainty, affecting model generalization.
Data Variability: Natural variations in the data may lead to
different model outcomes, especially in dynamic environments.

Model based
Algorithmic Complexity: Complex models may capture noise in
the data, leading to uncertainty in predictions.
Hyperparameter Sensitivity: Small changes in hyperparameters
may result in significantly different model behavior.

12 / 129

Uncertainty Quantification in Deep Learning
Sources of Uncertainty

Sources of Uncertainty in Machine Learning

Deployment and External Factors

Distribution Shift: Differences between training and deployment
data can introduce uncertainty, especially in real-world applications.
External Influences: Changes in the environment, user behavior, or
external events can impact model performance.

Training Process: Limited Training Data

Small Datasets: Insufficient data may lead to overfitting or
underfitting, introducing uncertainty in the model’s ability to
generalize.
Data Imbalance: Unequal representation of classes can result in
biased models with uncertain predictions for underrepresented
classes.

13 / 129

Uncertainty Quantification in Deep Learning
Sources of Uncertainty

Sources of Uncertainty in Machine Learning

Training Dynamics

Non-Convex Optimization: The non-convex nature of many
optimization problems in machine learning can result in multiple
local minima, impacting the model’s final state.
Stochastic Processes: Some machine learning tasks involve
inherent randomness, leading to inherent uncertainty in predictions.
Stochastic Gradient Descent: The randomness introduced by
stochastic optimization algorithms contributes to training
uncertainty.

14 / 129

Uncertainty Quantification in Deep Learning
Sources of Uncertainty

Sources of Uncertainty in Machine Learning

Dataset notations
We consider that we have a training dataset

D ..=
{
(x1, y1), . . . , (xN , yN)

}
⊂ X × Y , (3)

(xi , yi) are assumed to be independent and identically distributed
(i.i.d.) according to some unknown probability measure PX×Y on
X × Y

Model notations
We denote Ω the set of all possible models.
We denote H a subset of possible models.
We denote h(·) ∈ H a possible model that could be a Deep Neural
Network (DNN).
We denote fω(·) ∈ H a DNN model with weights ω.

15 / 129

Uncertainty Quantification in Deep Learning
Sources of Uncertainty

Sources of Uncertainty in Machine Learning

Model True objective
The goal of Machine Learning is to induce a hypothesis h∗ ∈ H with low risk
(expected loss)

R(h) ..=
∫
X×Y

ℓ(h(x), y) d PX×Y(x , y) . (4)

h∗ ..= argmin
h∈H

R(h) . (5)

Model Empirical objective
The goal of machine learning is to induce a hypothesis h∗ ∈ H with low risk
(empirical loss)

Remp(h) ..=
1
N

N∑
i=1

ℓ(h(xi), yi) , (6)

ĥ ..= argmin
h∈H

Remp(h) (7)

16 / 129

Uncertainty Quantification in Deep Learning
Sources of Uncertainty

Sources of Uncertainty in Machine Learning [8]

17 / 129

Uncertainty Quantification in Deep Learning
Sources of Uncertainty

Sources of Uncertainty in Machine Learning

Distribution shift
The dependency between X and Y is typically non-deterministic, the
description of a new prediction problem in the form of an instance x gives rise
to a conditional probability distribution

P(y |x) = PX×Y(x , y)
P(x)

(8)

Distribution shift can occur in either the marginal distribution P(x), or both
P(y) and P(x).

Distribution shift can occur in the sensory hence we have P(x) ̸= P ′(x)

Distribution shift can occur in the semantic hence we have P(y) ̸= P ′(y)

18 / 129

Uncertainty Quantification in Deep Learning
Sources of Uncertainty

Sources of Uncertainty in Machine Learning

Figure: Sensory Distribution shift: Domain adaptation [1] 19 / 129

Uncertainty Quantification in Deep Learning
Sources of Uncertainty

Sources of Uncertainty in Machine Learning

Figure: Sensory Distribution shift: ACDC Dataset [2]

20 / 129

Uncertainty Quantification in Deep Learning
Sources of Uncertainty

Sources of Uncertainty in Machine Learning

Figure: Sensory Distribution shift: MVTEC Dataset [3]

21 / 129

Uncertainty Quantification in Deep Learning
Sources of Uncertainty

Sources of Uncertainty in Machine Learning

Figure: Semantic Distribution shift: StreetHazards [4]

22 / 129

Uncertainty Quantification in Deep Learning
Sources of Uncertainty

Sources of Uncertainty in Machine Learning

Figure: Sensory and semantic (mixed) Distribution shift, for example, the
SegmentMeIfYouCan Challenge [5]

23 / 129

Uncertainty Quantification in Deep Learning
Sources of Uncertainty

Sources of Uncertainty in Machine Learning

Figure: Sensory and semantic (mixed and not mixed) Distribution shift, for
example, the MUAD dataset [6]

24 / 129

Uncertainty Quantification in Deep Learning
Sources of Uncertainty

Sources of Uncertainty in Machine Learning

Figure: Sensory and semantic (mixed and not mixed) Distribution shift for
example MUAD Dataset [6]

25 / 129

Uncertainty Quantification in Deep Learning
Sources of Uncertainty

Sources of Uncertainty in Machine Learning

26 / 129

Uncertainty Quantification in Deep Learning
Types of Uncertainty

Types of Uncertainty in Machine Learning

Epistemic Uncertainty
Model Uncertainty: Arises from a lack of knowledge about the true
model structure. It can be reduced with more data and better model
architecture.

Inherent Model Limitations: Uncertainty arising from the inability of the
model to capture all relevant aspects of the underlying data distribution.

Parameter Uncertainty: Related to uncertainty in the values of model
parameters, often addressed through techniques like Bayesian modeling.

Aleatoric Uncertainty

Data Uncertainty: Arises from inherent variability in the data. It
can be further classified into homoscedastic (constant variance) and
heteroscedastic (varying variance) uncertainty.
Measurement Uncertainty: Associated with errors in the
measurement process, impacting the reliability of observed data.

27 / 129

Uncertainty Quantification in Deep Learning
Types of Uncertainty

Types of Uncertainty in Machine Learning

Aleatoric vs. Epistemic Uncertainty

Aleatoric Uncertainty: Irreducible uncertainty due to inherent
randomness.
Epistemic Uncertainty: Uncertainty that can be reduced with
more information or improved models.

Limitation on the separation Aleatoric vs. Epistemic

Irreducible vs. Reducible: A a practitioner can decide to extend
the description of instances by additional features, which essentially
means replacing the current instance space X with another space X’.
Distribution shift: Can be considered as Aleatoric and/or

Epistemic Uncertainty

28 / 129

Uncertainty Quantification in Deep Learning
Types of Uncertainty

Types of Uncertainty in Machine Learning

Figure: Visualization of the data, the model, and the distributional uncertainty
for regression models. Taken from [7].

29 / 129

Uncertainty Quantification in Deep Learning
Types of Uncertainty

Types of Uncertainty in Machine Learning

Figure: Visualization of the data, the model, and the distributional uncertainty
for regression models. Taken from [7].

30 / 129

Uncertainty Quantification in Deep Learning
Types of Uncertainty

Types of Uncertainty: Case 11

Let us consider a neural network model trained with several pictures of
dogs. We ask the model to decide on a dog using a photo of a cat. What
would you want the model to do?

1Credits: Gille Louppe
31 / 129

Uncertainty Quantification in Deep Learning
Types of Uncertainty

Types of Uncertainty: Case 22

We have three different types of images to classify, cat, dog, and cow,
some of which may be noisy due to the limitations of the acquisition
instrument.

2Credits: Gille Louppe
32 / 129

Uncertainty Quantification in Deep Learning
Types of Uncertainty

Types of Uncertainty in Machine Learning

33 / 129

Uncertainty Quantification in Deep Learning
Types of Uncertainty

Types of Uncertainty in Machine Learning

34 / 129

Uncertainty Quantification in Deep Learning
Why do we need to Quantify Uncertainty

The Need to Quantify Uncertainty in Deep Neural
Networks

Context

Deep Neural Networks (DNNs) have achieved remarkable success in
various applications, but their predictions are not always infallible.
Recognizing and quantifying uncertainty is crucial for enhancing the
reliability and trustworthiness of DNNs.

Motivation
Real-world Consequences: In critical applications such as
healthcare or autonomous systems, incorrect predictions can have
severe consequences.
Decision-Making: Users and decision-makers need to understand
the confidence levels associated with DNN predictions.

35 / 129

Uncertainty Quantification in Deep Learning
Why do we need to Quantify Uncertainty

The Need to Quantify Uncertainty in Deep Neural
Networks

Figure: Confidence histograms (top) and reliability diagrams (bottom) for a
5-layer LeNet (left) and a 110-layer ResNet (right)on CIFAR-100. [9]

36 / 129

Uncertainty Quantification in Deep Learning
Why do we need to Quantify Uncertainty

Addressing Epistemic Uncertainty

Epistemic Uncertainty

DNNs often face uncertainty arising from limited training data and
model complexity.
Quantifying Epistemic Uncertainty: By estimating uncertainty
related to model parameters and architecture, we can better gauge
the reliability of predictions.

Benefits
Model Robustness: Understanding epistemic uncertainty helps
improve model robustness by highlighting areas where predictions are
less certain.
Adaptive Decision-Making: Decision-makers can adapt their
actions based on the level of confidence provided by the model.

37 / 129

Uncertainty Quantification in Deep Learning
Why do we need to Quantify Uncertainty

Addressing Aleatoric Uncertainty

Aleatoric Uncertainty

Aleatoric uncertainty stems from inherent randomness and variability
in the data.
Quantifying Aleatoric Uncertainty: DNNs should account for
uncertainty in the observed data, especially in scenarios with diverse
and dynamic inputs.

38 / 129

Uncertainty Quantification in Deep Learning
Why do we need to Quantify Uncertainty

Applications and Ethical Considerations

Applications

Medical Diagnosis: In medical imaging, uncertainties in image
quality and patient conditions must be considered for reliable
diagnoses.
Autonomous Systems: Vehicles and robots operating in dynamic
environments require models that can handle uncertainties in sensor
inputs.

Ethical Considerations
Avoiding Overconfidence: Quantifying uncertainty helps prevent
overconfident predictions that may lead to biased or unfair decisions.
Transparency and Accountability: Understanding uncertainty
enhances the accountability of AI systems and ensures ethical use.

39 / 129

Uncertainty Quantification in Deep Learning
Why do we need to Quantify Uncertainty

Diverse Applications of Uncertainty in Machine Learning

Other applications

Active Learning: Utilizing uncertainty in active learning aids in
selecting images that benefit the most from annotation, optimizing
the learning process.
Semi-Supervised Learning: Uncertainty is valuable in
semi-supervised learning, allowing for pseudo-annotation of data
without explicit human labeling.
Domain Adaptation: Incorporating uncertainty is beneficial in
domain adaptation, providing insights into the effectiveness of
knowledge transfer between different domains.
Open World Object Detection: Leveraging uncertainty in
open-world object detection helps identify instances when the model
encounters objects outside the scope of its training domain.

40 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Uncertainty Quantification Strategies

41 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Uncertainty Quantification Strategies

Single Deep Neural Network (DNN)

Basic Approach: Training a single DNN and utilizing inherent
uncertainty in its predictions.
Limitations: May not capture diverse sources of uncertainty,
especially in complex scenarios.
Application: Commonly used in straightforward tasks where model
complexity is not a significant concern.

Ensemble Methods

Idea: Combine predictions from multiple models (ensemble) to
enhance overall performance and quantify uncertainty.
Diversity: Ensemble models can be diverse in architectures,
initializations, or training data, capturing different aspects of
uncertainty.
Benefits: Generally more robust and provide better uncertainty
estimates.

42 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Uncertainty Quantification Strategies

Bayesian Methods

Principle: Bayesian methods incorporate prior knowledge and
update beliefs through observed data.
Uncertainty Estimation: Bayesian neural networks explicitly model
uncertainty by assigning probability distributions to weights.
Advantages: Capture epistemic uncertainty effectively but
computationally demanding.

Data Augmentation-Based Methods

Approach: Introduce variations in training data through data
augmentation techniques.
Uncertainty Incorporation: Augmented data provides a broader
view of the input space, aiding in uncertainty estimation.
Applications: Commonly used in image classification and computer
vision tasks.

43 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Uncertainty Quantification Strategies

Auxiliary-Based Networks

Concept: Augment primary task networks with auxiliary tasks to
enhance model understanding and uncertainty estimation.
Benefits: Improves model generalization and robustness by learning
diverse features.
Applications: Useful in scenarios with limited labeled data.

Interval-Based Methods
Approach: Define prediction intervals to quantify uncertainty.
Benefits: Provide a straightforward and interpretable way to
communicate uncertainty to users.
Applications: Widely used in regression tasks.

44 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Uncertainty Quantification Strategies

We will focus today just on the Orange blocks.

45 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Bayesian Approach in Deep Neural Networks

The goal of a Deep Neural Network (DNN) is to model the conditional
probability:

P(Y |X ,ω)

Most classical approaches optimize the parameters ω by maximizing the
likelihood:

ω = argmax
ω

logP(Dl |ω)

= argmax
ω

nl∑
i=1

logP(Yi |Xi ,ω)

= argmax
ω

1
nl

nl∑
i=1

logP(Yi |Xi ,ω)

= argmax
ω

E(X ,Y)∼P(Dl) logP(Y |X ,ω)

= argmin
ω

H[P(Dl),P(Y |X ,ω)]

where H denotes the cross-entropy.
46 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Bayesian Optimization and MAP Estimation

In the Bayesian framework, we seek the maximum a posteriori (MAP)
estimate:

ω = argmax
ω

logP(ω|Dl)

= argmax
ω

[logP(Dl |ω) + logP(ω)]

This results in L2 regularization, where prior knowledge about parameters
is incorporated.

47 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Bayesian DNN [17]

Bayesian DNN is based on marginalization instead of MAP optimization.

P(Y |X) = Eω∼P(ω|D) (P(Y |X ,ω))

P(Y |X) =

∫
P(Y |X ,ω)P(ω|D)dω

In practice:

P(Y |X) ≃
∑
i

(P(Y |X ,ωi)) with ωi ∼ P(ω|D)

Different techniques to estimate P(ω|D) .

48 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Posterior and ensemble [21]

Figure: Top: p(ω|D), with representations from VI (orange) deep ensembles
(blue), a multiBNN(red). Middle p(y |x ,ω)[15]

49 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Ensemble Methods Overview

Ensemble Methods Overview
Ensemble methods combine multiple base models to create a
stronger, more robust predictive model.
They are widely used to improve generalization and performance in
various machine learning tasks.
Can be used to quantify the uncertainty

50 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Ensemble Methods Overview

Ensemble Methods Overview

Bagging (Bootstrap Aggregating): Involves training multiple
instances of the same model using different subsets of the training
data and averaging their predictions.
Random Forests: Adapts the traditional random forest concept to
neural networks, creating an ensemble of decision trees or models.
Boosting: Sequentially trains multiple weak learners, giving more
weight to misclassified instances in each iteration to improve overall
model performance.
Stacking: Involves training multiple diverse models and combining
their predictions using another model (meta-learner).
Dropout: During training, it randomly drops out neurons,
effectively training an ensemble of slightly different models

51 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Ensemble Methods Overview

Ensemble Methods Overview
Snapshot Ensembles: Involves saving multiple snapshots of a
model during training and using these snapshots as an ensemble for
making predictions.
Bayesian Neural Networks (BNNs):Introduces uncertainty by
treating weights as probability distributions, providing a Bayesian
approach to ensembling.
Deep Ensembles: It ensembles multiple independently trained
neural networks to improve generalization and reduce overfitting.
Weak Ensembles: Methods that extend the ensemble concept to
the batch dimension during training, and that ensemble smaller
DNNs.

52 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Motivation for Ensemble Methods

53 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Bagging (Bootstrap Aggregating)

Bagging Overview

Idea: Bagging involves training multiple instances of the same
model using different subsets of the training data.
Bootstrap Sampling: Each model is trained on a bootstrap sample
(a random sample with replacement) from the original dataset.
Aggregation: Predictions are aggregated (e.g., averaged for
regression, majority vote for classification) to form the final
prediction.

54 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Advantages of Bagging

Benefits of Bagging

Reduced Variance: Bagging helps reduce model variance by
combining diverse models trained on different subsets of the data.
Improved Stability: By averaging predictions, bagging creates a
more stable and robust model, especially in the presence of outliers
or noisy data.
Parallelization: Training each model independently allows for easy
parallelization, improving computational efficiency.

55 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Boosting

Boosting Overview

Idea: Boosting focuses on sequentially training multiple weak
learners and giving more weight to misclassified instances.
Weighted Training: Misclassified instances are given higher
weights, emphasizing their importance in subsequent models.
Combining Weak Models: Predictions are combined, with more
emphasis on models that perform well on challenging instances.

56 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Advantages of Boosting

Benefits of Boosting

Sequential Improvement: Boosting builds models sequentially,
each focusing on correcting errors made by the previous ones.
Adaptability: Adaptive learning allows boosting to perform well
even with weak base models, leading to strong overall performance.
Handling Imbalanced Data: Boosting is effective in handling
imbalanced datasets by giving more weight to minority class
instances.

57 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Comparison: Bagging vs. Boosting

Bagging and Boosting Differences

Bagging: Parallel training of diverse models with equal weight;
reduces variance.
Boosting: Sequential training of models with adaptive weights;
focuses on correcting errors.
Diversity: Bagging relies on diverse subsets; boosting emphasizes
diversity through adaptive training.

58 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Deep Ensembles [13]

Deep Ensembles

Idea: Deep Ensembles involves training multiple instances of the
same DNN model using the same training data.
Diversity: Contrary to Bagging and Boosting Deep Ensemble relies
on 3 sources of stochasticity:

Stochastic Optimisation
Random Initialisation
Non-deterministic backpropagation studied in [25]

Aggregation: Predictions are averaged.

59 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Deep Ensembles [13]

They [13] propose to average the predictions of several DNNs with
different initial seeds:

P(y∗|x∗) = 1
Nmodel

Nmodel∑
j=1

P(y∗|ωj(t∗), x∗) (9)

60 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Deep Ensembles [18]

Figure: t-SNE plot of predictions from checkpoints corresponding to 3 different
randomly initialized trajectorie

61 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Deep Ensembles [18]

Figure: Results using SimpleCNN on CIFAR-10: t-SNE plots of validation set
predictions for each trajectory along with four different subspace generation
methods 62 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Deep Ensembles [18]

Figure: Diversity versus accuracy plots for 3 models trained on CIFAR-10

63 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Introduction to Dropout[10]

What is Dropout?

Definition: Dropout is a regularization technique used in neural
networks to prevent overfitting.
Idea: During training, randomly "drop out" (ignore) a fraction of
neurons, forcing the network to be more robust and preventing
reliance on specific neurons.

64 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

How Dropout Works[10]

Mechanism of Dropout

Training Phase: In each training iteration, random neurons are
dropped out with a specified probability.
Variability: Dropping out neurons introduces variability, making the
network less sensitive to the presence of any individual neuron.
Ensemble Effect: Dropout can be seen as training an ensemble of
multiple subnetworks, each missing different neurons.

65 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Benefits and Considerations

Advantages and Considerations of Dropout

Regularization: Dropout helps prevent overfitting, improving the
model’s generalization to unseen data.
Ensemble Training: Provides an implicit way to train multiple
models simultaneously, enhancing robustness.
Hyperparameter: The dropout rate is a hyperparameter that needs
to be tuned based on the specific task and dataset.
Impact on Training Time: While dropout is beneficial during
training, it is typically turned off during inference.

66 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

MC dropout [12]

They [12] propose to average the predictions of several DNNs where they
apply the dropout:

P(y∗|x∗) = 1
Nmodel

Nmodel∑
j=1

P(y∗|ω(t∗)⊙ bj , x∗) (10)

with bj a vector of the same size of ω(t∗) which is a realization of a
binomial distribution.

67 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Overview of Weak Ensemble Methods

Overview of Weak Ensemble Methods
While Deep Ensemble is frequently considered state-of-the-art
(SOTA), it comes with significant computational demands.
Weak Ensemble methods offer a faster alternative to achieve
comparable results.
Weak Ensemble methods can be performed on a reduced dataset,
or/and with fewer neurons, or/and for a shorter duration.

68 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

BatchEnsemble Overview [22]

What is BatchEnsemble?
Definition: BatchEnsemble is an ensemble learning technique
designed for improving the performance and robustness of neural
networks.
Inspiration: Inspired by ensemble methods, BatchEnsemble extends
the concept to the batch dimension during training.

How BatchEnsemble Works
Batch-Level Ensembling: Instead of ensembling models across
different training runs, BatchEnsemble ensembles within the same
training batch.
Variability Across Batches: Introduces diversity by training
multiple instances of the model within each batch, enhancing
robustness.

69 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

BatchEnsemble Overview [22]

They [22] propose to approximate the average of the predictions of
several DNN with different initial seeds by using a DNN with two king of
weights. For simplicity is the ω has two set of weight ωslow , ωfast

For simplicity let us consider a DNN with just one fully connected layer
and let us write ω = {ωj}Nmodel

j=1 = {Wj}Nmodel
j=1 and ωslow = W and

ωslow = {Fj}Nmodel
j=1 . We have Wj = W · F = W · (rjstj)

Figure: An illustration on how to generate the ensemble weights for two
ensemble members

70 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

BatchEnsemble Overview [22]

We have a set of weight Wj = W · F = W · (rjstj) with W that sees all
images and (rjs

t
j) that does not see all the same images. If we denote ϕ

an activation function then when we apply the BatchEnsemble on an
image we perform:

y = ϕ
(
W t

j x
)
= ϕ

(
(W t · (rjstj))tx

)
= ϕ

(
(W t(x · rj) · sj)

)
Similarly to Deep Ensembles, to perform inference we just perform
ensembling :

P(y∗|x∗) = 1
Nmodel

Nmodel∑
j=1

P(y∗|ωj , x
∗) (11)

Figure: An illustration on how to generate the ensemble weights for two
ensemble members

71 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

MIMO Overview [11]

What is MIMO?
Definition: MIMO stands for Multiple Input Multiple Output .
Objective: MIMO aims to utilize a single model’s capacity to train
multiple subnetworks that independently learn the task at hand.

72 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Key Concepts of MIMO [11]

How MIMO Works
MIMO principle: The lottery ticket hypothesis shows that one can
prune away 70-80% of the connections in a DNN without adversely
affecting performance
MIMO Idea:The basic Idea is that a neural network has sufficient
capacity to fit 3-4 independent subnetworks simultaneously. Hence
they just need to modify the input and output to handle this 3-4
subnetworks.

73 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Key Concepts of MIMO [11]

c l a s s MIMOModel(nn . Module) :
de f __init__(s e l f , hidden_dim : i n t = 784 , ensemble_num : i n t = 3) :

supe r (MIMOModel , s e l f) . __init__ ()
s e l f . i n p u t_ l a y e r = nn . L i n e a r (hidden_dim , hidden_dim ∗ ensemble_num)
s e l f . backbone_model = BackboneModel (hidden_dim , ensemble_num)
s e l f . ensemble_num = ensemble_num
s e l f . ou tpu t_ laye r = nn . L i n e a r (128 , 10 ∗ ensemble_num)

de f f o rwa rd (s e l f , i npu t_ten so r : t o r c h . Tensor) :
i npu t_ten so r = inpu t_ten so r . t r a n s p o s e (1 , 0) . v iew (

batch_s ize , s e l f . ensemble_num , −1)
(batch_s ize , ensemble_num , hidden_dim)
i npu t_ten so r = s e l f . i n pu t_ l a y e r (i npu t_ten so r)
(batch_s ize , ensemble_num , hidden_dim ∗ ensemble_num)
u su a l model f o rwa rd
output = s e l f . backbone_model (i npu t_ten so r) # (batch_s ize , ensemble_num , 128)
output = s e l f . ou tpu t_ laye r (output) # (batch_s ize , ensemble_num , 10 ∗ ensemble_num)
output = output . r e shape (

batch_s ize , ensemble_num , −1, ensemble_num
) # (batch_s ize , ensemble_num , 10 , ensemble_num)
output = to r ch . d i a g o n a l (output , o f f s e t =0, dim1=1, dim2=3). t r a n s p o s e (2 , 1)

(batch_s ize , ensemble_num , 10)
output = F . log_softmax (output , dim=−1) # (batch_s ize , ensemble_num , 10)
r e t u r n output

74 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Key Concepts of MIMO [11]

Figure: The multi-input multi-output (MIMO) configuration, the network takes
M = 3 inputs and gives M outputs [11]

75 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Packed-Ensembles Overview [25]

Seamless training of ensembles with Packed-Ensembles

Definition: Packed-Ensembles estimate the posterior distributions
restraining their support to smaller networks in a computationally
efficient manner with grouped convolutions.
Objective: Get the benefits of deep ensembles with reduced costs.

x1

ŷ1

x1

ŷ1 ŷ1

x1
M = 3 M = 3

width α × widthwidth

a) b) c)

γ = 2

Figure: Left: A standard network, Center: A deep ensembles, Right: The
corresponding Packed-Ensembles

76 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

How well does Packed-Ensembles perform? [25]

Performance of Packed-Ensembles
Performance: For sufficiently large networks, Packed-Ensembles is
equivalent to deep-ensembles in performance and UQ.
Computational efficiency: Use Packed-Ensembles with float16 to
benefit from grouped-convolutions better.

2 3 4 5 6
Images/sec (×103)

78

79

80

81

82

A
cc

ur
ac

y
(%

)

10M 20M 90M

Packed-Ensembles
(2, 4, 1)

Packed-Ensembles
(2, 4, 2)

Deep Ensembles (×4)

Single

MIMO (4)

Figure: Performance (accuracy) wrt. the image throughput

77 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Sources of stochasticity in deep ensembles [25]

Figure: Impact of the three sources of stochasticity, non-deterministic backdrop.
kernels (ND), different initialization (DI), and different batches (DB).

Uncertainty-sources are equivalent!

No source of stochasticity during training seems to single out. Having
one source is sufficient, and adding more does not seem to affect the
performance or the quantitative functional diversity (Mutual information).

78 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Last Layer sampling [29]

Figure: Left: A standard network, Right: A Last Layer samplings DNN

79 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Last Layer sampling [29]

Last Layer Sampling

Idea: Instead of estimation the posterior for the entire model, only
we estimate the posterior only for the last layer.
Benefits: Reduces computational cost and memory, while still
benefiting from ensemble-based uncertainty estimation.
Diversity: Each ensemble member has a unique final layer, leading
to diverse predictions while sharing common features from earlier
layers.
Aggregation: Predictions are averaged across the last layer
ensemble members, similar to full ensembles.

80 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Mixture Density Networks Overview [26]

What are Mixture Density Networks?

Definition: Mixture Density Networks (MDNs) are neural networks
producing the parameters of mixture density models.
Objective: Relaxing the inductive bias enforced onto the model
when assuming P(y |x ,ω) follows unimodal distributions, by
considering mixtures of them.

Figure: The output of a neural network parametrizes a Gaussian mixture model
(from [27]). 81 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Ensemble Methods

Mixture Density Networks Overview [26]

MDNs can approximate any probability density function up to a certain
point, assuming mixing coefficients and Gaussian parameters are carefully
chosen.

Building Mixture Density Networks

MDNs can be implemented using ensembles of networks producing
unimodal distribution parameters.
Further in that direction we can consider mixtures of mixtures using
ensembles of MDNs, enabling different levels of modes. [28]

By doing so, each ensemble member can contribute to modeling the
aleatoric uncertainty, while the ensemble helps to estimate epistemic
uncertainty.

82 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

BNN Methods

Bayesian Neural Networks (BNN)

Unlike MAP optimization, Bayesian Neural Networks perform
marginalization over parameters:

P(Y |X) = Eω∼P(ω|Dl) [P(Y |X ,ω)]

=

∫
P(Y |X ,ω)P(ω|Dl)dω

In practice, this is approximated using Monte Carlo sampling:

P(Y |X) ≈ 1
M

M∑
i=1

P(Y |X ,ωi), ωi ∼ P(ω|Dl)

Several methods exist for approximating P(ω|Dl).

83 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

BNN Methods

Variational Inference in Bayesian Neural Networks

Variational inference approximates the posterior P(ω|Dl) using a family
of distributions qλ(ω):

λ represents the variational parameters defining the distribution.
If q is Gaussian, λ = (µ, σ2) represents its mean and variance.

Key Question: How well does qλ(ω|Dl) approximate P(ω|Dl)?

84 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

BNN Methods

Measuring Approximation: KL Divergence

To quantify the approximation quality, we use Kullback-Leibler (KL)
divergence:

KL(qλ(ω|Dl)||P(ω|Dl)) =

∫
qλ(ω|Dl) log

qλ(ω|Dl)

P(ω|Dl)
dω

= Eq[log qλ(ω|Dl)]− Eq[logP(ω,Dl)] + logP(Dl)

85 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

BNN Methods

Evidence Lower Bound (ELBO)

Since P(Dl) is intractable, we focus change the problem to find the
optimal approximate posterior:

q∗λ(ω/Dl) = argminλKL(qλ(ω/Dl) || P(ω|Dl)).

Hence, we optimize the Evidence Lower Bound (ELBO):

ELBO(λ) = Eq[logP(Dl |ω)]−KL(qλ(ω/Dl)||P(ω))

Minimizing KL divergence is equivalent to maximizing ELBO.

86 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

BNN Methods

Reparameterization Trick

Theorem: If ω = t(λ, ϵ) with ϵ ∼ q(ϵ) and q(ϵ)dϵ = qλ(ω)dω, then:

∂

∂λ
Eqλ(ω)f (ω, λ) = Eq(ϵ)

[
∂f (ω, λ)

∂ω

∂ω

∂λ
+

∂f (ω, λ)

∂λ

]
This trick enables gradient-based optimization of variational parameters.

87 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

BNN Methods

Bayesian Neural Networks: Practical Example

88 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

BNN Methods

Weight Uncertainty in Neural Networks3

3Image credit: Eric Ma
89 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

BNN Methods

TRADI: a Bayesian DNN

W(0) W(t) W(t*)

Figure: TRADI uses Kalman filtering for tracking the distribution W of all
DNN weights across training steps from a generic prior W(0) to the final
estimate W(t∗).

90 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

BNN Methods

TRADI: Mean State and Measurement Equations

Equations for the Mean µk(t)

µk(t) = µk(t − 1)− η∇Lωk (t) + εµ,

ωk(t) = µk(t) + ε̃µ,

εµ ∼ N (0, σ2
µ): State noise.

ε̃µ ∼ N (0, σ̃2
µ): Observation noise.

91 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

BNN Methods

TRADI: Variance State and Measurement Equations

Equations for the Variance σ2
k(t)

σ2
k(t) = σ2

k(t − 1) +
(
η∇Lωk (t)

)2 − η2µk(t)
2 + εσ,

zk(t) = σ2
k(t)− µk(t)

2 + ε̃σ.

εσ ∼ N (0, σ2
σ): State noise.

ε̃σ ∼ N (0, σ̃2
σ): Observation noise.

92 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

BNN Methods

TRADI: Comparison - Normal DNN vs Bayesian DNN

Normal DNN Bayesian DNN

93 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

BNN Methods

TRADI: Sampling New Realizations of Weights

Weight Sampling Equation

ω̃(t∗) = µ(t∗) +Σ1/2(t∗)× m1,

where Σ is the covariance matrix, and m1 ∼ N (0K , IK).

Prediction

P(y∗|x∗) = 1
Nmodel

Nmodel∑
j=1

P(y∗|ω̃j(t∗), x∗).

94 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

BNN Methods

TRADI: Efficient BNN Strategy

Key Idea

TRADI is a Bayesian Neural Network (BNN) strategy that tracks
the posterior distribution of the Deep Neural Network (DNN)
during training.

Benefits of TRADI
Lightweight Approach: Unlike traditional BNNs, TRADI does not
introduce heavy computational overhead.
Non-intrusive: It does not perturb the DNN training process,
allowing it to run as efficiently as a standard DNN.
Posterior Tracking: By monitoring the posterior, TRADI enhances
the uncertainty estimation while keeping the model’s original
structure intact.

95 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

BNN Methods

How to estimate the Posterior of BNN?

Classical VI-BNN
Using the "reparametrization trick", a layer j of an MLP can be written:

uj = norm
([

W (j)
µ + ϵjW

(j)
σ

]
hj−1, βj , γj

)
, and

aj = a(uj),
(12)

where the matrices W
(j)
µ and W

(j)
σ denote the mean and standard

deviation of the posterior distribution of layer j , ϵj ∼ N (0,1) and the
operator norm(·, βj , γj), of trainable parameters βj and γj , can refer to
any batch, layer, or instance normalization.

96 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

BNN Methods

How to turn a DNN into a BNN?

ABNN
Our objective differs from VI-BNN, which requires training the posterior
distribution parameters from scratch. Instead, our approach entails
leveraging and converting an existing DNN into a BNN.

1. Train a single model 3. Train ABNN2. Transform weights with ABNN

Figure: Illustration of the training process for the ABNN. The procedure
begins with training a single DNN ωMAP, followed by architectural adjustments
to transform it into an ABNN. The final step involves fine-tuning the ABNN
model.

97 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

BNN Methods

Converting DNNs into BNNs

Post-hoc Bayesian Strategy

Base Strategy: Start with pre-trained DNNs with normalization
layers like Batch, Layer, or Instance normalization.
Bayesian Adaptation: Replace deterministic normalization layers
with Bayesian Normalization Layers (BNL) that add Gaussian
perturbation.
Goal: Efficiently convert pre-trained DNNs into Bayesian Neural
Networks (BNNs) with minimal modifications.

98 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

BNN Methods

Bayesian Normalization Layer (BNL)

Transforming Normalization Layers

Key Equation:

uj = BNL
(
W (j)hj−1

)
, and aj = a(uj), with

BNL(hj) =
hj − µ̂j

σ̂j
× γj(1 + ϵj) + βj ,

where ϵj ∼ N (0,1)
Explanation: Gaussian perturbation is applied to normalization
layers to introduce stochasticity like gaussian dropout,
transforming deterministic layers into Bayesian layers.
Parameters: γj and βj are learnable vectors, retrained for a limited
number of epochs.

99 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

BNN Methods

Training ABNN

Training Strategy

Process: - After replacing normalization layers with BNL, retrain
the parameters for a few epochs.
Multi-Modality: - Instead of training a single model, we train
multiple ABNNs, each with different weight configurations
ω1, . . . ,ωM .
Benefit: This approach helps in improving the generalization and
reliability of the BNN.

100 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

BNN Methods

Inference in ABNN

Inference Strategy

Sampling from ABNN: - For each ABNN sample, multiple ϵj are
drawn independently from N (0,1).
Marginalization: The prediction for a new sample x is the expected
outcome from a finite ensemble of models and weight configurations:

P(y | x ,D) ≈ 1
ML

L∑
l=1

M∑
m=1

P(y | x ,ωm, ϵl).

101 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

BNN Methods

Benefits of ABNN

Key Advantages

Uncertainty Estimation: BNNs provide a probabilistic
interpretation of model predictions.
Efficient Conversion: Pre-trained DNNs can be easily adapted into
BNNs with minimal retraining.
Scalability: The use of Bayesian Normalization Layers (BNL) allows
leveraging modern architectures like ResNet and Vision
Transformers.

102 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Uncertainty criteria

Quantifying Uncertainty in DNNs

Criteria for Uncertainty Assessment

Single DNN:
Maximum Class Probability (MCP):

maxk⊂YP(Y = k|x ,w)
Higher MCP implies higher confidence, while lower MCP indicates
increased uncertainty.

Entropy:
H(P(Y |x ,w)) := −

∑
k∈Y P(Y = k|x ,w) logP(Y = k|x ,w))

Higher entropy signifies higher uncertainty as it reflects a more
uniform distribution of probabilities. (related to aleatoric uncertainty)

Ensemble of DNNs:
Maximum Class Probability (MCP): Similar to single DNN, but now
considering the MCP across the marginalized distribution
P(Y = k|x) =

∫
P(Y |X ,ω)P(ω|D)dω.

Entropy: H(P(Y |x)) := −
∑

k∈Y P(Y |x) logP(Y |x))
Mutual Information: Measures the shared information between
predictions of individual models, offering insights into epistemic
uncertainty: I (Y |x) = H(P(Y = k|x))− EP(ω|D)H(P(Y = k|ω, x))

103 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Uncertainty criteria

Some Results [23]

104 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Uncertainty criteria

Some Results [24]

Figure: First row: input image and ground truth, second, third, and fourth
rows: output and confidence score given by MC dropout, Deep Ensembles, and
our TRADI, respectively.

105 / 129

Uncertainty Quantification in Deep Learning
Uncertainty Quantification Strategies

Uncertainty criteria

Some Results [23]

(a) input image (b) MC dropout confidence

(c) Deep Ensembles confidence (d) TRADI confidence

Figure: Zooms of the confidence results on the CamVid experiments. In the
bottom left of the input image (a), there is a human, hence a pixel region of an
unknown class for all the DNNs, since the pedestrian class was amongst the
ones marked as unlabeled. Yet, only the TRADI DNN (d) is consistent.

106 / 129

Uncertainty Quantification in Deep Learning
Evaluating Uncertainty Quantification in DNNs

Evaluating Uncertainty Quantification in DNNs

Evaluating Uncertainty in DNNs

Evaluating the quality of Uncertainty quantification is crucial for
reliable deep learning models.
We distinguish between aleatoric uncertainty, epistemic uncertainty,
and distribution shift, each requiring specific evaluation metrics.

107 / 129

Uncertainty Quantification in Deep Learning
Evaluating Uncertainty Quantification in DNNs

Introduction to ECE

Expected Calibration Error (ECE) for classification

Definition: The Expected Calibration Error (ECE) is a metric used
to assess the calibration of predicted probabilities in classification
tasks.
Importance: Calibration is crucial for models that provide
probability estimates, ensuring that predicted confidence scores align
with actual outcomes.

108 / 129

Uncertainty Quantification in Deep Learning
Evaluating Uncertainty Quantification in DNNs

Introduction to ECE

ECE Formula and Interpretation

Formula: We begin by partitioning the data into m bins based on
the confidence scores of the DNN predictions. Bi represents the
collection of samples whose predicted probabilities fall within the i-th
bin.

ECE =
m∑
i=1

|Bi |
N

· |accuracy(Bi)− confidence(Bi)|

Interpretation:
A perfectly calibrated model has ECE = 0, indicating precise
alignment between predicted and actual probabilities.
Higher ECE values suggest miscalibration, revealing discrepancies
between predicted confidence and true outcomes.

109 / 129

Uncertainty Quantification in Deep Learning
Evaluating Uncertainty Quantification in DNNs

Introduction to ECE

ECE: Usage and Considerations

Usage:
ECE provides a global measure of calibration across the entire range
of predicted probabilities.
Visualization through a reliability diagram aids in understanding
calibration performance.

Considerations:
ECE is sensitive to bin sizes; proper binning is crucial for meaningful
results.
Lower ECE values indicate better-calibrated models with more
accurate confidence scores.

110 / 129

Uncertainty Quantification in Deep Learning
Evaluating Uncertainty Quantification in DNNs

Introduction to Sparsification Error

Sparsification Error

Definition: The Sparsification Error (SE) is a metric used to assess
the correspondence between the uncertainty and the errors.
Importance: Sparsification Error is crucial for models that provide
confidence score estimates, ensuring that predicted confidence scores
align with actual error.

111 / 129

Uncertainty Quantification in Deep Learning
Evaluating Uncertainty Quantification in DNNs

Introduction to Sparsification Error

Sparsification Error Formula and Interpretation

Formula: We begin by choosing an error metric (MSE, MAE, ...)
then we partition the data into 2 sets of m bins:

one set is based on the confidence scores of the DNN predictions. Bi

represents the collection of samples whose predicted probabilities fall
within the i-th bin.
one set is based on the error scores of the DNN predictions. Oi

represents the collection of samples whose predicted probabilities fall
within the i-th bin.

Sparsif. error =
N∑
i=1

|error(concat(Bi , ...,BN))− error(concat(Oi , ...,ON))|

Interpretation:
A perfectly calibrated model has Sparsification error = 0, indicating
precise alignment between the predicted confidence score and the
DNN error.

112 / 129

Uncertainty Quantification in Deep Learning
Evaluating Uncertainty Quantification in DNNs

Aleatoric Uncertainty Evaluation (Classification)

Quantifying Aleatoric Uncertainty (Classification)

Negative Log Likelihood (NLL): Measures the likelihood of the
true class under the predicted probability distribution.
Expected Calibration Error (ECE): Measures the calibration of
predicted probabilities against true outcomes.
Accuracy: Essential for assessing the correctness of predictions.

113 / 129

Uncertainty Quantification in Deep Learning
Evaluating Uncertainty Quantification in DNNs

Aleatoric Uncertainty Evaluation (Regression)

Quantifying Aleatoric Uncertainty (Regression)

Accuracy: Essential for assessing the correctness of predictions.
Sparsification Error: Measures the error introduced by discarding
uncertain predictions.

114 / 129

Uncertainty Quantification in Deep Learning
Evaluating Uncertainty Quantification in DNNs

Epistemic Uncertainty Evaluation (Classification)

Quantifying Epistemic Uncertainty (OOD Detection)

Quantifying Epistemic Uncertainty is hard so often we consider just
Out-of-Distribution (OOD) Detection.
Out-of-Distribution (OOD) Detection: Evaluates the model’s
ability to detect samples outside the training distribution.
Transform to 2-Class Classification: Detecting ID vs. OOD
samples, based on DNN confidence scores.

115 / 129

Uncertainty Quantification in Deep Learning
Evaluating Uncertainty Quantification in DNNs

Epistemic Uncertainty Evaluation (Classification)

Quantifying Epistemic Uncertainty (metrics)

We use metrics for binary classification assessment:
AUROC (Area Under the Receiver Operating Characteristic Curve):
Measures the trade-off between true positive rate (sensitivity) and
false positive rate (1-specificity) across different probability
thresholds. A higher value (closer to 1) indicates better performance.
AUPR (Area Under the Precision-Recall Curve): Focuses on the
precision-recall trade-off, emphasizing positive class prediction
performance, especially in imbalanced datasets. A higher value
(closer to 1) indicates better performance.
FPR95 (False Positive Rate at 95% True Positive Rate): Evaluates
the model’s performance at a high sensitivity level (95% true positive
rate). A lower value (closer to 0) indicates better performance.

116 / 129

Uncertainty Quantification in Deep Learning
Evaluating Uncertainty Quantification in DNNs

Epistemic Uncertainty Evaluation (regression)

Quantifying Epistemic Uncertainty

We apply a similar evaluation approach as in the classification task
to assess epistemic uncertainty in regression.
It’s important to note that defining Out-of-Distribution (OOD)
instances can be challenging in regression tasks compared to
classification.

117 / 129

Uncertainty Quantification in Deep Learning
Evaluating Uncertainty Quantification in DNNs

Distribution Shift Evaluation (Classification)

Quantifying Distribution Shift

Accuracy, ECE and Sparsification Error: Standard metrics for
assessing classification and regression performance.
Transform to 2-Class Classification: Detecting shifted vs.
non-shifted samples.

118 / 129

Uncertainty Quantification in Deep Learning
Evaluating Uncertainty Quantification in DNNs

Considerations and Challenges

Considerations and Challenges

Trade-offs: Balancing between different metrics to obtain a
comprehensive evaluation.
Context: Metrics may vary based on the application, dataset, and
specific requirements.
Interpretability: Understanding the implications of uncertainty
metrics for decision-making.

119 / 129

Uncertainty Quantification in Deep Learning
Conclusions and applications

Importance of Quantifying Uncertainty in DNNs

Enhancing Reliability and Safety

Reliability: Quantifying uncertainty in DNNs is crucial for improving the
reliability of their predictions.

Safety: Knowing the level of uncertainty allows for more cautious
decision-making, contributing to safer and more robust AI.

Utilizing Uncertainty for Various Tasks

Anomaly Detection: Uncertainty quantification aids in identifying unusual
or unexpected patterns, enhancing anomaly detection capabilities.

Domain Adaptation: Understanding uncertainty facilitates smoother
adaptation of models to different domains.

Semi-Supervised Learning: Uncertainty information can guide the
pseudo-labeling of unlabeled data, enhancing semi-supervised learning
approaches.

Open Set Classification: Quantifying uncertainty is valuable for
distinguishing between known and unknown classes in open set
classification scenarios.

120 / 129

Uncertainty Quantification in Deep Learning
Conclusions and applications

Key Takeaways

Summary of Insights

Understanding Sources: We explored various sources impacting
DNNs, acknowledging the inherent uncertainties.
Distinguishing Types: The distinction between aleatoric and
epistemic uncertainty provided clarity on different uncertainty
manifestations.
Quantification Techniques: We delved into diverse methods for
quantifying uncertainty in DNNs.
Evaluation Approaches: Different techniques for evaluating the
effectiveness of uncertainty quantification were discussed.

121 / 129

Uncertainty Quantification in Deep Learning
Conclusions and applications

Conclusions

Next Steps: Implementation

Practical Application: Moving forward, we will explore practical
implementations of uncertainty quantification.

Link for the Practical Application: please visit the following link:

https://drive.google.com/file/d/
1GpeHCq5bQDEusUtYHroGNIXDNW4fKMf1/view?usp=sharing

Exploring Further

Contribute to Torch Uncertainty: If you are interested in advancing the
field, consider contributing to Torch Uncertainty.

https://github.com/ENSTA-U2IS/torch-uncertainty

Explore Our Resources: Check out our curated list of resources on
Uncertainty, available at our "awesome" repository.

https:
//github.com/ENSTA-U2IS/awesome-uncertainty-deeplearning

122 / 129

https://drive.google.com/file/d/1GpeHCq5bQDEusUtYHroGNIXDNW4fKMf1/view?usp=sharing
https://drive.google.com/file/d/1GpeHCq5bQDEusUtYHroGNIXDNW4fKMf1/view?usp=sharing
https://github.com/ENSTA-U2IS/torch-uncertainty
https://github.com/ENSTA-U2IS/awesome-uncertainty-deeplearning
https://github.com/ENSTA-U2IS/awesome-uncertainty-deeplearning

Uncertainty Quantification in Deep Learning
Conclusions and applications

Conclusions

Tutorial Collab link

TorchUncertainty

Thanks for your attention!

123 / 129

https://colab.research.google.com/drive/1EDFNrhWDFWW5z376HBMvAQuxieOMkLLP?usp=sharing
https://github.com/ENSTA-U2IS-AI/torch-uncertainty

Uncertainty Quantification in Deep Learning
Bibliography

Bibliography:

1 Pan, F., Shin, I., Rameau, F., Lee, S., & Kweon, I. S. (2020).
Unsupervised intra-domain adaptation for semantic segmentation
through self-supervision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (pp.
3764-3773).

2 Sakaridis, Christos, Dengxin Dai, and Luc Van Gool. "ACDC: The
adverse conditions dataset with correspondences for semantic driving
scene understanding." Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2021.

3 Bergmann, P., Fauser, M., Sattlegger, D., & Steger, C. (2019).
MVTec AD–A comprehensive real-world dataset for unsupervised
anomaly detection. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition (pp. 9592-9600).

4 Hendrycks, D., Basart, S., Mazeika, M., Zou, A., Kwon, J.,
Mostajabi, M., ... & Song, D. (2019). Scaling out-of-distribution
detection for real-world settings. arXiv preprint arXiv:1911.11132.

124 / 129

Uncertainty Quantification in Deep Learning
Bibliography

Bibliography:

5 Chan, R., Lis, K., Uhlemeyer, S., Blum, H., Honari, S., Siegwart, R.,
... & Rottmann, M. (2021). Segmentmeifyoucan: A benchmark for
anomaly segmentation. arXiv preprint arXiv:2104.14812.

6 Franchi, G., Yu, X., Bursuc, A., Tena, A., Kazmierczak, R.,
Dubuisson, S., ... & Filliat, D. (2022). MUAD: Multiple
Uncertainties for Autonomous Driving, a benchmark for multiple
uncertainty types and tasks. arXiv preprint arXiv:2203.01437.

7 Gawlikowski, J., Tassi, C.R.N., Ali, M., Lee, J., Humt, M., Feng, J.,
Kruspe, A., Triebel, R., Jung, P., Roscher, R. and Shahzad, M.,
2023. A survey of uncertainty in deep neural networks. Artificial
Intelligence Review, 56(Suppl 1), pp.1513-1589.

8 Hullermeier, Eyke, and Willem Waegeman. "Aleatoric and epistemic
uncertainty in machine learning: An introduction to concepts and
methods." Machine Learning 110 (2021): 457-506.

125 / 129

Uncertainty Quantification in Deep Learning
Bibliography

Bibliography:

9 Guo, Chuan, et al. "On calibration of modern neural networks."
Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org, 2017.

10 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., &
Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural
networks from overfitting. The journal of machine learning research,
15(1), 1929-1958.

11 Havasi, M., Jenatton, R., Fort, S., Liu, J. Z., Snoek, J.,
Lakshminarayanan, B., ... & Tran, D. (2020). Training independent
subnetworks for robust prediction. arXiv preprint arXiv:2010.06610.

12 Gal, Yarin, and Zoubin Ghahramani. "Dropout as a bayesian
approximation: Representing model uncertainty in deep learning."
international conference on machine learning. 2016.

13 Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell.
"Simple and scalable predictive uncertainty estimation using deep
ensembles." Advances in neural information processing systems.
2017.

126 / 129

Uncertainty Quantification in Deep Learning
Bibliography

Bibliography:

14 Kendall, Alex, and Yarin Gal. "What uncertainties do we need in
bayesian deep learning for computer vision?." Advances in neural
information processing systems. 2017.

15 A.G. Wilson, P. Izmailov. Bayesian Deep Learning and a
Probabilistic Perspective of Generalization. Advances in Neural
Information Processing Systems, 2020.

16 Ilg, E., Cicek, O., Galesso, S., Klein, A., Makansi, O., Hutter, F., &
Brox, T. (2018). Uncertainty estimates and multi-hypotheses
networks for optical flow. In Proceedings of the European
Conference on Computer Vision (ECCV) (pp. 652-667).

17 Blundell, Charles, et al. "Weight uncertainty in neural networks."
arXiv preprint arXiv:1505.05424 (2015).

18 Fort, Stanislav, Huiyi Hu, and Balaji Lakshminarayanan. "Deep
Ensembles: A Loss Landscape Perspective." arXiv preprint
arXiv:1912.02757 (2019).

127 / 129

Uncertainty Quantification in Deep Learning
Bibliography

Bibliography:

19 Yu, Xuanlong, Gianni Franchi, and Emanuel Aldea. "SLURP: Side
learning uncertainty for regression problems." arXiv preprint
arXiv:2110.11182 (2021).

20 Upadhyay, U., Karthik, S., Chen, Y., Mancini, M., & Akata, Z.
(2022, October). Bayescap: Bayesian identity cap for calibrated
uncertainty in frozen neural networks. In European Conference on
Computer Vision (pp. 299-317). Cham: Springer Nature
Switzerland.

21 A.G. Wilson, P. Izmailov. Bayesian Deep Learning and a
Probabilistic Perspective of Generalization. Advances in Neural
Information Processing Systems, 2020.

22 Wen, Yeming, Dustin Tran, and Jimmy Ba. "Batchensemble: an
alternative approach to efficient ensemble and lifelong learning."
arXiv preprint arXiv:2002.06715 (2020).

128 / 129

Uncertainty Quantification in Deep Learning
Bibliography

Bibliography:

22 Wen, Yeming, Dustin Tran, and Jimmy Ba. "Batchensemble: an
alternative approach to efficient ensemble and lifelong learning."
arXiv preprint arXiv:2002.06715 (2020).

23 Hendrycks, Dan, et al. "A Benchmark for Anomaly Segmentation."
arXiv preprint arXiv:1911.11132 (2019).

24 Franchi, G., Bursuc, A., Aldea, E., Dubuisson, S., & Bloch, I.
(2020). TRADI: Tracking deep neural network weight distributions.
In ECCV 2020.

25 Laurent, O., Lafage, A., Tartaglione, E., Daniel, G., Martinez, J. M.,
Bursuc, A., and Franchi, G. (2022). Packed-Ensembles for Efficient
Uncertainty Estimation. In ICLR 2023.

26 Bishop, C. M. (1994). Mixture density networks. Aston University.
27 Vossen, J., Feron, B., Monti and A. (2018). Probabilistic Forecasting

of Household Electrical Load Using Artificial Neural Networks.
28 Lafage, A., Barbier, M., Franchi, G., and Filliat, D. (2024).

Hierarchical Light Transformer Ensembles for Multimodal Trajectory
Forecasting.

129 / 129

	Sources of Uncertainty
	Types of Uncertainty
	Why do we need to Quantify Uncertainty
	Uncertainty Quantification Strategies
	Uncertainty Quantification Strategies
	Ensemble Methods
	BNN Methods
	Uncertainty criteria

	Evaluating Uncertainty Quantification in DNNs
	Conclusions and applications
	Bibliography

