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Introduction
Multi-Agent Systems and Distributed Artificial Intelligence

• Agent: An entity that behaves autonomously in the pursuit
of goals

• Multi-agent system: A system of multiple interacting
agents

An agent is...
• Autonomous: Is of full control of itself
• Interactive: May communicate with other agents
• Reactive: Responds to changes in the environment or

requests by other agents
• Proactive: Takes initiatives to achieve its goals
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Decision Making

xi ?
« I’m satisfied with xi »

xj ?
« agent i agrees with agent j »

How agents can make their decisions in an autonomous and coordinated manner?

⇒ Cooperative decentralized decision making
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Mono-Agent Decision Making

xi ?
« I’m satisfied with xi »

xj ?
« agent i agrees with agent j »

How agents can make their decisions in an autonomous and coordinated manner?

⇒ Cooperative decentralized decision making
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Multi-Agent Decision Making

xi ?
« I’m satisfied with xi »

xj ?
« agent i agrees with agent j »

How agents can make their decisions in an autonomous and coordinated manner?

⇒ Cooperative decentralized decision making
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Focus on Cooperative Settings

Decentralized Decision Making
• Agents have to coordinate to perform best actions
• Cooperative settings

• Agents form a team → best actions for the team

Sample Applications
• Surveillance (target tracking, coverage)
• Robotics (cooperative exploration)
• Autonomous vehicles (cooperative traffic management)
• Scheduling (meeting scheduling, EOS scheduling)
• Rescue Operation (task assignment)
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About Distribution and Decentralization

If cooperative, why not centralizing decision making?

⇒ autonomy ( ) + privacy ( )

Why distribution might not be sufficient?
⇒ autonomy ( ) + privacy ( ) + robustness ( )

Decentralization
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Introduction
Sample multi-agent systems
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Expected Takeaway

• Modeling frameworks
• Algorithms
• Illustrative problems and applications
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Today’s Menu

1 Introduction

2 Multi-Robot Task Allocation

3 Coordinating using Distributed Constraint Optimization

4 Coordinating using Auctions

5 Illustration 1: Constellation Management

6 Illustration 2: On-demand Transport

7 Illustration 3: Unmanned Aircraft System Traffic Management

8 Conclusions
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Multi-Robot Task Allocation
Definition

Definition (MRTA)
• A set of agents (robots, satellites, etc.),

R = {r1, . . . , r|R|} with capabilities
• A set of tasks, T = {t1, . . . , t|T |}, with

time-related and operation constraints
and requirements

• Find an assignment of tasks to agents,
wrt. some consistency constraints

• e.g. capabilities, dependencies between
tasks, resource capacity, plan
consistency

whilst optimizing some specific objective

• e.g. completion time, energy
Mission CADRE – ©NASA

Who does what (when and in what order) ?
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Multi-Robot Task Allocation
Simple Problem Formulation

max
x

n∑
i=1

m∑
j=1

uijxij

subject to
m∑

j=1

xij ≤ 1, ∀i ∈ {1, ..., n}

n∑
i=1

xij ≤ 1, ∀j ∈ {1, ...,m}

xij ∈ {0, 1}, ∀i, j
with uij utility for robot i executing task j, ∀i, j

NP-hard, requires advanced optimization methods
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Multi-Robot Task Allocation
Classification and Solution Methods

Classification
[Shiroma and Campos, 2009]

• Instantaneous (IA) vs. Time-Extended (TA)
Allocation

• Single-Type (ST) vs. Multi-Type (MT) Robot
Scenarios

• Single-Task (SR) vs. Multi-Task (MR) Request
Scenarios

Solution Methods
[Chakraa et al., 2023; Shelkamy et al., 2020]

• Integer Linear Programming (ILP)
• Metaheuristics (e.g., Simulated Annealing,

Genetic Algorithms)
• Distributed and Decentralized Approaches

[Quinton et al., 2023]

• Machine Learning-based Methods

Here to Help ©XKCD – CC BY-NC 2.5
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Multi-Robot Task Allocation
Distributed and Decentralized Algorithms

©ONERA, F. Quinton

12/94Multi-agent CoordinationG. Picard01/07/2025



Today’s Menu

1 Introduction

2 Multi-Robot Task Allocation

3 Coordinating using Distributed Constraint Optimization

4 Coordinating using Auctions

5 Illustration 1: Constellation Management

6 Illustration 2: On-demand Transport

7 Illustration 3: Unmanned Aircraft System Traffic Management

8 Conclusions

13/94Multi-agent CoordinationG. Picard01/07/2025



Motivating example
Sensor networks

x1 x2

x3 x4

x5 x6
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Motivating example
Sensor networks

x1

x3

x5

x1 x2

x3 x4

x5 x6

x1 x3 x5 Sat?
N N N 7

N N E 7

… 7

S W N 3

… 7

W W W 7

Model the problem
as a CSP!
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CSP
Constraint Satisfaction

• Variables X = {x1, . . . , xn}
• Domains D = {D1, . . . , Dn}
• Constraints C = {c1, . . . , cm}

where a constraint ci ⊆ Di1 ×Di2 × . . .×Din denotes the possible valid joint assignments for the
variables xi1 , xi1 , . . . , xin it involves

• Goal: Find an assignment to all variables that satisfies all the constraints
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Max-CSP
Max Constraint Satisfaction

x1

x3

x5

x2

x4

x6

x1 x3 x5 Sat?
N N N 7

N N E 7

… 7

S W N 3

… 7

W W W 7

Model the problem
as a Max-CSP!
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Max-CSP
Max Constraint Satisfaction

• Variables X = {x1, . . . , xn}
• Domains D = {D1, . . . , Dn}
• Constraints C = {c1, . . . , cm}

where a constraint ci ⊆ Di1 ×Di2 × . . .×Din denotes the possible valid joint assignments for the
variables xi1 , xi1 , . . . , xin it involves

• Goal: Find an assignment to all variables that satisfies a maximum number of constraints
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Max-CSP
Max Constraint Satisfaction

x1

x3

x5

x2

x4

x6

x1 x3 x5 Sat?
N N N 7

N N E 7

… 7
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WCSP (or COP)
Constraint Optimization

x1

x3

x5

x2

x4

x6

x1 x3 x5 Cost
N N N ∞
N N E ∞

… ∞
S W N 10

… ∞
W W W ∞

Model the problem
as a COP!
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WCSP (or COP)
Constraint Optimization

• Variables X = {x1, . . . , xn}
• Domains D = {D1, . . . , Dn}
• Constraints C = {c1, . . . , cm}

where a constraint ci : Di1 ×Di2 × . . .×Din → R+ ∪ {∞} expresses the degree of constraint
violation

• Goal: Find an assignment to all variables that minimizes the sum of all the constraints
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Constraint Reasoning

CSP Max-CSP

COP
• Hard constraints to Soft

constraints
• Objective: minimize cost

• Objective: maximize
#constraints satisfied
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WCSP (or COP)
Constraint Optimization

x1

x3

x5

x2

x4

x6

Imagine that each sensor is an
autonomous agent

How should this problem be modeled and
solved in a decentralized manner?
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DCOP
Distributed Constraint Optimization [Modi et al., 2005]

x1

x3

x5

x2

x4

x6

a1 a2

a3 a4

a5 a6

Imagine that each sensor is an
autonomous agent

How should this problem be modeled and
solved in a decentralized manner?
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DCOP
Distributed Constraint Optimization [Modi et al., 2005]

x1

x3

x5

x2

x4

x6

c1 c2

a1 a2

a3 a4

a5 a6
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DCOP
Distributed Constraint Optimization [Modi et al., 2005]

• Agents X = {a1, . . . , al}
• Variables X = {x1, . . . , xn}
• Domains D = {D1, . . . , Dn}
• Constraints C = {c1, . . . , cm}
• Mapping of variables to agents

• Goal: Find an assignment to all variables that minimizes the sum of all the constraints
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DCOP
Distributed Constraint Optimization [Modi et al., 2005]

CSP Max-CSP

COP
• Hard constraints to Soft

constraints
• Objective: minimize cost

• Objective: maximize
#constraints satisfied
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DCOP
Distributed Constraint Optimization [Modi et al., 2005]

CSP Max-CSP

COP DCOP

• Variables are controlled by agents
• Communication model
• Local knowledge

27/94Multi-agent CoordinationG. Picard01/07/2025



DCOP Algorithms
See [Fioretto et al., 2018]

Search

Inference
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Inference
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Search

Inference

Synchronous
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Asynchronous

Synchronous

Asynchronous

Partially
decentralized

Fully
decentralized

Fully
decentralized

Complete

Incomplete
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Search

Inference

Search

Inference

Search

Sampling

Search

Inference

Synchronous

Synchronous

Asynchronous

Synchronous

Asynchronous

Partially
decentralized

Fully
decentralized

Fully
decentralized

Complete

Incomplete

Important metrics
• Agent complexity
• Network loads
• Message size

• Anytime
• Quality guarantees
• Execution time vs. solution

quality
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DCOP Algorithms
See [Fioretto et al., 2018]

Search

Inference

Search

Inference

Search

Sampling

Search

Inference

Synchronous

Synchronous

Asynchronous

Synchronous

Asynchronous

Partially
decentralized

Fully
decentralized

Fully
decentralized

Complete

Incomplete

• Systematic process, divided in
steps

• Each agent waits for particular
messages before acting

• Consistent view of the search
process

• Typically, increases idle-time
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DCOP Algorithms
See [Fioretto et al., 2018]

Search

Inference

Search

Inference

Search

Sampling

Search

Inference

Synchronous

Synchronous

Asynchronous

Synchronous

Asynchronous

Partially
decentralized

Fully
decentralized

Fully
decentralized

Complete

Incomplete

• Decision based on agents’ local
state

• Agents’ actions do not depend
on sequence of received
messages

• Minimizes idle-time
• No guarantees on validity of

local views

28/94Multi-agent CoordinationG. Picard01/07/2025



DCOP Algorithms
See [Fioretto et al., 2018]

Search

Inference

Search

Inference

Search

Sampling

Search

Inference

Synchronous

Synchronous

Asynchronous

Synchronous

Asynchronous

Partially
decentralized

Fully
decentralized

Fully
decentralized

Complete

Incomplete

Synchronous
Branch-and-Bound (SBB)
[Hirayama and Yokoo, 1997]
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Synchronous Branch-and-Bound (SBB)
[Hirayama and Yokoo, 1997]

A

B

C

D

{�,�}

{�,�}

{�,�}

{�,�}

xi xj (A,B) (A,C) (B,C) (B,C)

5 5 5 3
8 10 4 8
20 20 3 10
3 3 3 3

How do we solve this distributedly?
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Synchronous Branch-and-Bound (SBB)
[Hirayama and Yokoo, 1997]

• Agents operate on a complete ordering
• Agents exchange CPA messages containing

partial assignments
• When a solution is found, its solution cost as an

UB is broadcasted to all agents
• The UB is used for branch pruning

Complete ordering

A

B

C

D

{�,�}

{�,�}

{�,�}

{�,�}
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Synchronous Branch-and-Bound (SBB)
[Hirayama and Yokoo, 1997]

0
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D D

C

D D

B

C

D D

C

D D

A

B

C

D D

C

D DD

C

B

A
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Synchronous Branch-and-Bound (SBB)
[Hirayama and Yokoo, 1997]
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Synchronous Branch-and-Bound (SBB)
[Hirayama and Yokoo, 1997]
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Synchronous Branch-and-Bound (SBB)
[Hirayama and Yokoo, 1997]

SBB
Correct Yes

the solution it finds is optimal
Complete Yes
it terminates

Message complexity O(d)
max size of messages

Network load O(bd)
max number of messages

Runtime O(bd)
how long it takes

branching factor = b
num variables = d
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Synchronous Branch-and-Bound (SBB)
[Hirayama and Yokoo, 1997]
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Synchronous Branch-and-Bound (SBB)
[Hirayama and Yokoo, 1997]
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Can we speed this up by
parallelizing some computations?

Hint: Are there independent or conditionally
independent subproblems?
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Synchronous Branch-and-Bound (SBB)
[Hirayama and Yokoo, 1997]
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Synchronous Branch-and-Bound (SBB)
[Hirayama and Yokoo, 1997]
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These computations are the same

independent of C!
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Pseudo-Tree

A

B

C

D

{�,�}

{�,�}

{�,�}
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C D

{�,�}

{�,�}

{�,�} {�,�}

Definition (Pseudo-Tree)
A spanning tree of the constraint graph such that no two nodes in sibling subtrees share a constraint in
the constraint graph
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DCOP Algorithms
See [Fioretto et al., 2018]

Search

Inference

Search

Inference

Search

Sampling

Search

Inference

Synchronous

Synchronous

Asynchronous

Synchronous

Asynchronous

Partially
decentralized

Fully
decentralized

Fully
decentralized

Complete

Incomplete

Distributed Pseudotree
Optimization Procedure
(DPOP)
[Adrian Petcu and Boi Faltings, 2005]
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DPOP
[Adrian Petcu and Boi Faltings, 2005]

• Extension of the Bucket Elimination (BE)
• Agents operate on a pseudo-tree ordering
• UTIL phase: Leaves to root
• VALUE phase: Root to leaves

A

B

C D

{�,�}

{�,�}

{�,�} {�,�}

UTIL

VALUE
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DPOP
[Adrian Petcu and Boi Faltings, 2005]

B D (B,D)
r r 3 min{3, 8} = 3
r g 8
g r 10 min{10, 3} = 3
g g 3

Message to B
B cost
r 3
g 3

A

B

C D

{�,�}

{�,�}

{�,�} {�,�}

UTIL D
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DPOP
[Adrian Petcu and Boi Faltings, 2005]

A B C (B,C) (A,C) cost
r r r 5 5 10
r r g 4 8 12
r g r 3 5 8
r g g 3 8 11
g r r 5 10 15
g r g 4 3 7
g g r 3 10 13
g g g 3 3 6

Message to B
A B cost
r r 10
r g 8
g r 7
g g 6

A

B

C D

{�,�}

{�,�}

{�,�} {�,�}

UTIL C
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DPOP
[Adrian Petcu and Boi Faltings, 2005]

A B (A,B) Util C Util D cost
r r 5 10 53 18
r g 8 8 3 19
g r 20 7 3 30
g g 3 6 3 12

Message to A
A cost
r 18
g 12

A

B

C D

{�,�}

{�,�}

{�,�} {�,�}

UTIL

B
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DPOP
[Adrian Petcu and Boi Faltings, 2005]

A cost
r 18
g 12

optimal cost = 12

A

B

C D

{�,�}

{�,�}

{�,�} {�,�}

UTIL

A
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DPOP
[Adrian Petcu and Boi Faltings, 2005]

A cost
r 18
g 12

• Select value for A = g

• Send MSG ”A = g” to agents B and C

A

B

C D

{�,�}

{�,�} {�,�}

VALUEA {�,�}
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DPOP
[Adrian Petcu and Boi Faltings, 2005]

A B (A,B) Util C Util D cost
r r 5 10 53 18
r g 8 8 3 19
g r 20 7 3 30
g g 3 6 3 12

• Select value for B = g

• Send MSG ”B = g” to agents C and D

A

B

C D
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VALUE{�,�}
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DPOP
[Adrian Petcu and Boi Faltings, 2005]

A B C (B,C) (A,C) cost
r r r 5 5 10
r r g 4 8 12
r g r 3 5 8
r g g 3 8 11
g r r 5 10 15
g r g 4 3 7
g g r 3 10 13
g g g 3 3 6

• Select value for C = g
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DPOP
[Adrian Petcu and Boi Faltings, 2005]

B D (B,D)
r r 3 min{3, 8} = 3
r g 8
g r 10 min{10, 3} = 3g g 3

• Select value for D = g

A

B

C D

VALUE{�,�}

{�,�}

{�,�}

D

{�,�}
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DPOP
[Adrian Petcu and Boi Faltings, 2005]

SBB DPOP
Correct Yes Yes

the solution it finds is optimal
Complete Yes Yes
it terminates

Message complexity O(d) O(bd)
max size of messages

Network load O(bd) O(d)
max number of messages

Runtime O(bd) O(bd)
how long it takes

branching factor = b
num variables = d
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DCOP Algorithms
See [Fioretto et al., 2018]

Search

Inference

Search

Inference

Search

Sampling

Search

Inference

Synchronous

Synchronous

Asynchronous

Synchronous

Asynchronous

Partially
decentralized

Fully
decentralized

Fully
decentralized

Complete

Incomplete

Distributed Local Search
[Maheswaran et al., 2004; Weixiong Zhang et al.,

2003]
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Local Search Algorithms

• DSA: Distributed Stochastic Search [W. Zhang et al., 2005]

• MGM: Maximum Gain Messages Algorithm [Maheswaran et al.,

2004]

• Note: we now maximize utilities

• Every agent individually decides whether to change its
value or not

• Decision involves
• knowing neighbors’ values
• calculation of utility gain by changing values
• probabilities

A B C

{�,�} {�,�} {�,�}

xi xj (A,B) (B,C)

5 5
5 0
0 0
8 8
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DSA Algorithm
[W. Zhang et al., 2005]

• All agents execute the following
• Randomly choose a value
• while (termination is not met)

• if (a new value is assigned): send the new value to neighbors
• collect neighbors’ new values if any
• select and assign the next value based on assignment rule
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DSA Algorithm
[W. Zhang et al., 2005]

A B C
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DSA Algorithm
[W. Zhang et al., 2005]

A B CA B C
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DSA Algorithm
[W. Zhang et al., 2005]

A B CA B C
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DSA Algorithm
[W. Zhang et al., 2005]

A B CA B C
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DSA Algorithm
[W. Zhang et al., 2005]
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MGM Algorithm
[Maheswaran et al., 2004]

• All agents execute the following
• Randomly choose a value
• while (termination is not met)

• if (a new value is assigned): send the new value to neighbors
• collect neighbors’ new values if any
• calculate gain and send it to neighbors
• collect neighbors’ gains
• if (it has the highest gain among all neighbors): change value to the value that maximizes gain

Large Great if you need an anytime algorithm!
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MGM vs DSA

Figure: MGM Figure: DSA
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Extensions to the DCOP Framework

• Dynamic DCOPs
• SDPOP [A. Petcu and B. Faltings, 2005], I-ADOPT and I-BnB-ADOPT [Yeoh et al., 2011], FMS [Ramchurn et al., 2010]

• Multi-Objective DCOPs
• MO-SBB [Medi et al., 2014], Pseudo-tree Based Algorithm [Matsui et al., 2012], B-MOMS [Delle Fave et al., 2011],

DP-AOF [Okimoto et al., 2013]

• Asymetric DCOPs
• SyncABB-2ph, SyncABB-1ph, ACLS, MCS-MGM [Grinshpoun et al., 2013]

• Probabilistic DCOPs
• E[DPOP] and SD-DPOP [Léauté and B. Faltings, 2011; Nguyen et al., 2012], U-GDL [Stranders et al., 2011]

• Continuous DCOPs
• CMS [Stranders et al., 2009], HCMS [Voice et al., 2010], PFD [Choudhury et al., 2020], EC-DPOP, AC-DPOP,

CAC-DPOP, C-DSA [Hoang et al., 2020], C-CoCoA [Sarker et al., 2021]

• ...
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Coordinating using Auctions
What are Auctions?

• Competitive bidding processes for allocating
goods or services

• Buyers submit bids, highest bid wins
• Different auction schemes exist

(e.g., English, Dutch, sealed-bid)

• Single item vs. Multiple items
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Coordinating using Auctions
Classical Protocol

. . .
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Coordinating using Auctions
Classical Protocol
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Coordinating using Auctions
Classical Protocol
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Coordinating using Auctions
Classical Protocol
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Coordinating using Auctions
Simple Formulation of Winner Determination Problem (WDP)

• T = {t1, t2, ..., tm} the set of goods to be
auctioned

• A = {a1, a2, ..., an} the set of bidders
• B = {b1, b2, ..., bk} the set of bid combinations

(bundles)
• yik ∈ {0, 1} indicates whether bundle bk is

allocated to bidder ai

• cik the price offered by bidder ai for bundle sk

max
∑
ai∈A

∑
bk∈S

cikyik

s.t.
∑
ai∈A

∑
bk⊆T ,tj∈bk

yik ≤ 1, ∀tj ∈ T

∑
bk⊆T

yik ≤ 1, ∀ai ∈ A
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Coordinating using Auctions
Many auction schemes [Parsons et al., 2011]
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5: allocation

5: allocation

• Combinatorial Auctions (CA)
[Cramton et al., 2010]

• Parallel Single Item Auctions (PSI)
[Koenig et al., 2006]

• Each agent bids on the whole set of items in parallel
• Sequential Single Item Auctions (SSI)

[Lagoudakis et al., 2005]
• Each agent sequentially bids on a single item wrt to

the already allocated items
• Consensus-based Bundle Auction (CBBA)

[Choi et al., 2009]
• WDP decentralized as a consensus on bundles
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Consensus-based Bundle Auction (CBBA)
[Choi et al., 2009]
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CBBA Algorithm
How does it work?
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complete
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CBBA Algorithm
How does it work?

• Bundle Construction
• Each agent creates bundles of tasks it can

complete
• May include dependent tasks

• Bidding
• Agents bid on bundles based on their

utility
• Messages sent to neighbors
• e.g. completion time, preferences

• Conflict Resolution
• Conflicting bids are adjusted/removed
• e.g. valuation and time stamps
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CBBA Algorithm
How does it work?

• Bundle Construction
• Each agent creates bundles of tasks it can

complete
• May include dependent tasks

• Bidding
• Agents bid on bundles based on their

utility
• Messages sent to neighbors
• e.g. completion time, preferences

• Conflict Resolution
• Conflicting bids are adjusted/removed
• e.g. valuation and time stamps

• Allocation
• Winning bundles are allocated
• Agents execute the tasks in their assigned

bundles

53/94Multi-agent CoordinationG. Picard01/07/2025



Consensus-based Bundle Auction (CBBA)

Advantages of CBBA
• Decentralized: No central authority required, enabling robust operation in dynamic

environments
• Scalable: Efficiently handles large numbers of agents and tasks
• Flexible: Can be adapted to different task allocation problems and objective functions
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Advantages of CBBA
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environments
• Scalable: Efficiently handles large numbers of agents and tasks
• Flexible: Can be adapted to different task allocation problems and objective functions

• How to handle tasks requiring multiple agents?
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Advantages of CBBA
• Decentralized: No central authority required, enabling robust operation in dynamic

environments
• Scalable: Efficiently handles large numbers of agents and tasks
• Flexible: Can be adapted to different task allocation problems and objective functions

• How to handle tasks requiring multiple agents?
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Consensus-based Bundle Auction (CBBA)

Advantages of CBBA
• Decentralized: No central authority required, enabling robust operation in dynamic

environments
• Scalable: Efficiently handles large numbers of agents and tasks
• Flexible: Can be adapted to different task allocation problems and objective functions

• How to handle tasks requiring multiple agents?
• How to handle composite/sequenced tasks?
• How to handle alternative sequences/modes?
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Illustration 1: Constellation Management
Sample system: Constellation of Agile Earth Observation Satellites (EOS)

©Airbus

• Multiple satellites, potentially operated by multiple partners
• Heterogenous orbits and sensors
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Illustration 1: Constellation Management
Observing Earth using Agile Satellites

©AVS Laboratory, Licensed under CC BY 4.0• Agile satellites: can image targets about-track and along-track
• Equipped with imaging instrument(s) to gather data about ground targets

Given a set of obervation tasks, select and optimally schedule a subset of tasks to perform
under the constraints given by the position and the agility of the EOS
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Illustration 1: Constellation Management
Single Satellite Problem

The Earth Observation Scheduling Problem (or EOSP) consists in finding
a sequence of observations σ = [σ1, . . . , σK ] such that:
• each candidate observation at most once in σ

• the successive observations can be performed during the allowed
time windows; formally, the earliest start time of the first observation
is sσ1 = Sσ1 , the earliest start time of the kth observation is given by
sσk = max(Sσk , sσk−1 + tt(σk−1, σk, sσk−1)), and condition
sσk ≤ Eσk must be satisfied for every observation σk involved in σ

• the total reward collected (
∑

i∈σ Rwi) is maximized

• Agile EOS scheduling problem can be mapped to TD-OP-TW [Schmid and Ehmke, 2017]

• TD-OP-TW is NP-hard [Golden et al., 1987]

• Common solution methods : ant colony optimization [Verbeeck et al., 2017], iterated local search [Garcia et al.,

2010], or large neighborhood search (LNS) [Schmid and Ehmke, 2017]

58/94Multi-agent CoordinationG. Picard01/07/2025



Illustration 1: Constellation Management
Multi-Satellite Problems [Pralet, 2025]

Click for video
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Multi-Satellite Problems [Pralet, 2025]

Click for video
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Inter-Exclusive Coordinated Scheduling

• We focus here on collective observation
scheduling on a constellation where some users
have exclusive access to some orbit portions

⇒ Answer to strong user expectations to benefit
both from a shared system (to reduce costs)
and a proprietary system (total control and
confidentiality)

Mission center u0

Ex. User u1

Agency

Comm. station

Ex. User u2

EO Satellite 1

EO Satellite 2

EO Satellite 3
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Scheduling Observations on an EOS Constellation
Illustrative Example
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The Problems Behind

• How to coordinate exclusive user plans, without
disclosing private plans, whilst meeting system
constraints (memory, energy, etc.)

• How to couple private and non-private observations as to
maximize the system cost-efficiency?
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EOSCSP Model [Picard, 2022a]

Earth Observation Satellite Constellation Scheduling with Exclusives Problem is a tuple

P = 〈S,U ,R,O〉

• S = {s = 〈tstart
s , tend

s , κs, τs〉} is a set of satellites
• U = {u = 〈eu, pu〉} is a set of users
• R = {r = 〈tstart

r , tend
r ,∆r, ρr, pr, ur, θr〉} is a set of requests

• O = {o = 〈tstart
o , tend

o ,∆o, ro, ρo, so, uo, po〉} is a set of observation opportunities
A solution to an EOSCSP is a mapping M = {(o, t) | o ∈ O, t ∈ [tstart

o , tend
o ]}

s.t. the overall reward is maximized (sum of the rewards of the scheduled observations):
argmaxM

∑
(o,t)∈M ρo
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How to Solve EOSCSPs?

• Centralized allocation

• Exact solving (e.g. MILP), but won’t scale-up
• Heuristic solving (e.g. greedy)
7 private plan disclosure

• Distributed allocation

• Auctions (e.g. PSI, SSI, CBBA)
• Distributed optimization (e.g. DCOPs)
3 plans remain private
� requires some coordination/communication
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Auction-based Coordination for EOSCSP
Focus on Resource/Task Allocation

Many application fields, as Collective Robotics, make use of market-based approach to allocate
tasks/resources to robots
• A set of resources (robots, satellites, etc.), R = {r1, . . . , r|R|}
• A set of tasks, T = {t1, . . . , t|T |}, each having a time-related and operation constraints
• Find an allocation of tasks to resources, wrt. some consistency constraints
≈ multi-item allocation: each resource is allocated several tasks (bundle)
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Auction-based Coordination for EOSCSP
Allocating non exclusive observations to best exclusive portions

Auction-based approches are relevant for satellite task allocation [Phillips and Parra, 2021]

• Combinatorial Auctions (CA) [Cramton et al., 2010]
• Parallel Single Item Auctions (PSI) [Koenig et al.,

2006]

• Each agent bids on the whole set of tasks in
parallel

• Sequential Single Item Auctions (SSI)
[Lagoudakis et al., 2005]

• Each agent sequentially bids on a single task
wrt to the already allocated tasks

• Consensus-based Bundle Auction (CBBA)
[Choi et al., 2009]

• Each agent bids on some bundle of tasks and
converge to a consensus with other agents
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Applying Auction-based Allocation to EOSCSP
General Scheme

1 Identify non exclusive requests possibly fulfilled in exclusive portions
2 Send identified requests to exclusive users
3 Solve the allocation problem using PSI, SSI or CBBA

• Bids are computed as the best marginal costs of integrating requests in their current plans (which amounts
to solve scheduling problems...)

4 Allocate as many remaining requests outside exclusive windows
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DCOP-based Coordination for EOSCSP
Allocating non exclusive observations to best exclusive portions

• Consider the collective decision for allocating
non exclusive tasks to exclusive windows

• Collective decision to coordinate exclusive users’
decisions modeled as a distributed constraint
optimization problem (DCOP)

• As for auctions, exclusive users aim to
minimizing the marginal cost of integrating non
exclusive tasks in their schedule, while meeting
some operational constraints
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DCOP-based Coordination for EOSCSP
General Scheme

1 Identify non exclusive requests possibly fulfilled in exclusive windows
2 Send each identified request r to exclusives users, one by one
3 Solve the problem of r using a DCOP solution method (e.g. DPOP [Adrian Petcu and Boi Faltings, 2005])

• Costs are computed as the best marginal cost of integrating requests in their current plan (which amounts
to solve a scheduling problem...)

4 Allocate as many remaining requests outside exclusive windows
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DCOP-based Coordination for EOSCSP
DCOP Model

A DCOP 〈A,X ,D, C, µ〉 is defined for a given request r, and a current scheduling

• The agents are the exclusive users which can potentially schedule r:

A = {u ∈ Uex|∃(s, (tstart
u , tend

u )) ∈ eu, ∃o ∈ θr s.t. so = s, [tstart
u , tend

u ] ∩ [tstart
o , tend

o ] 6= ∅} (1)

• Each agent u owns binary decision variables, one for each observation o ∈ O[u]r and exclusive e in
its exclusives eu, stating whether it schedules o in e or not:

X = {xe,o|e ∈
⋃

u∈A eu, o ∈ O[u]r} (2)
D = {Dxe,o = {0, 1}|xe,o ∈ X} (3)

with O[u]r = {o ∈ θr|∃(s, (tstart
u , tend

u )) ∈ eu, s.t. so = s, [tstart
u , tend

u ] ∩ [tstart
o , tend

o ] 6= ∅} are observations
related to request r that can be scheduled on u’s exclusives

• µ associates each variable xe,o to e’s owner
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DCOP-based Coordination for EOSCSP (cont.)
DCOP Model

• Constraints should check that at most one observation is scheduled per request (4), that satellites
are not overloaded (5), that at most one agent serves the same observation (6)

∑
e∈

⋃
u∈A eu

xe,o ≤ 1, ∀u ∈ X , ∀o ∈ O[u]r (4)∑
o∈{o∈O[u]r|u∈A,so=s},e∈

⋃
u∈A eu

xe,o ≤ κ∗
s , ∀s ∈ S (5)∑

e∈
⋃

u∈A eu
xe,o ≤ 1, ∀o ∈ O (6)

• The cost to integrate an observation in the current user’s schedule should be assessed to guide the
optimization process

c(xe,o) = π(o,Muo), ∀xe,o ∈ X (7)

where π evaluates the best cost obtained when scheduling o and any combination of observations
from Muo , as to consider all possible revisions of uo’s current schedule

C = {(4), (5), (6), (7)} (8)
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Highly conflicting randomly generated problems
5-min horizon with overlapping requests and limited capacity
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7 cbba and s_dcop requires extra-computation time (≈ 1000s)
3 cbba and s_dcop provide the best solutions wrt. reward
3 cbba exchanges fewer messages of small size
3 ssi remains the best compromise wrt. solution quality, computation time and communication load
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Realistic randomly generated problems
6-hour horizon with numerous requests and large capacity
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3 cbba does require less time to compute than s_dcop
3 s_dcop and cbba can perform many computation concurrently
⇒ There is room for computation speedup in real distributed settings
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Where to find detailed info?

• Initial model definition [Picard, 2022a]

• Auction-based and DCOP-based solution methods [ibid.]

• More complex requests and decentralized auctions [Picard, 2023a]

• Some data [Picard, 2023b]
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On-demand Transport
Mines Saint-Etienne [Daoud et al., 2021a, 2020, 2021b,c,d, 2023], Renault Innovation

Figure: Dial A Ride Problem (DARP)
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Existing Approaches

Centralized dispatch (conventional)
• Requests are gathered from a central portal
• Integer Linear Programming (ILP)

⇒ NP-hard, lack of scalability
• Requires continuous access to the portal

⇒ costly, bottleneck, single point of failure

Decentralized dispatch (experimental)
• Decentralized autonomous decisions

⇒ Requires conflict detection and resolution protocols
• P2P communication

⇒ Requires communication model to ensure information sharing
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Contributions and Core Concepts

Generic Autonomous Agent Model
• Adjustable autonomy level
• Adjustable cooperation level
• Adjustable and dynamic allocation scheme

Communication Model
• Transitive V2V
• Dynamic

Insertion-cost Heuristic
• Marginal cost of inserting request
• Re-assessed when neighbors change

Communicating

Acting

Planning

information sharing

coordination

update schedule

update beliefs
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Experimental Evaluation
Simulation with synthetic (Saint-Étienne) and real data (NYC)
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Sample Results
NYC Dataset
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(b) QoS evolution with fleet size

Figure: Solution quality evolution with fleet size
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Sample Results (cont.)
NYC Dataset

(a) Average number of messages received by a vehicle in
connected set

(b) Average message size received by a vehicle in
connected set

Figure: Communication load evolution.
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Illustration 3: Unmanned Aircraft System Traffic Management
Example: Urban UTM Scenario
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Illustration 3: Unmanned Aircraft System Traffic Management
Context and Vision

• Concepts of operations are still work in progress
[Federal Aviation Agency, 2020; SESAR, 2019]

• Several challenging optimization problems identified [Hamadi, 2020]

Our focus: 4D trajectory repair
• Free Route Airspace
• Decisions at the UAS level
• UAVs can directly exchange information via V2V communication
• Tactical and reactive coordination mechanisms between several (semi-)autonomous UAS
• Focus on small UAVs able to perform stationary flight and operating at low altitude (between

0m and 300m)
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Contributions and Core Concepts
[Hamadi and Picard, 2024; Picard, 2022b]

Generic Autonomous UAV Model
• Adjustable autonomy level
• Pluggable at UAS level
• Adjustable deconfliction protocol

Corrective Actions
• 4D contract update
• Postpone, elevate, skip

Multi-criteria Valuation
• Impact of a corrective action
• Safety, QoS, QoB, etc.

Perceive
(+ check msgs)

Choose
next target

no conflict

Update
trajectory

conflict

Move arrived

no
ta

rri
ve

d

collision
detected
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Experimental Evaluation

Environment
• An area of 2km by 2km, with vertical airspace

planes at 20m, 40m and 60m
• hmax = 18m.s−1, vmax = 6m.s−1,

amax = Π/2rad.s−1,
∆hmax = ∆vmax = 6m.s−2,
∆amax = Π/2rad.s−2

• Initial speed is set to (0, 0, 0)

• Initial UAV trajectories are randomly generated
with 60 way-points

• Safety tubes are defined by
(h, v, t) = (30, 15, 1)

• Number of UAVs in {5, 10, 15, 20, 25}

86/94Multi-agent CoordinationG. Picard01/07/2025



Result Analysis
Without coordination, numerous conflicts and/or some violations
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Result Analysis (cont.)
Without coordination, increased delays or reduced QoS

afb dpop dsa mgm2 postpone elevate skip centralized

5 10 15 20 25
number of UAVs

0.850

0.875

0.900

0.925

0.950

0.975

1.000

av
er

ag
e

co
ns

er
va

tio
n

5 10 15 20 25
number of UAVs

3200

3300

3400

3500

3600

si
m

ul
at

ed
tim

e
(s

)

5 10 15 20 25
number of UAVs

0

10000

20000

30000

40000

50000

to
ta

ld
el

ay

5 10 15 20 25
number of UAVs

0

500

1000

1500

2000

av
er

ag
e

de
la

y

88/94Multi-agent CoordinationG. Picard01/07/2025



Result Analysis (cont.)
Coordination group size are small ⇒ communication/computation overload are limited

afb dpop dsa mgm2 postpone elevate skip centralized
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Result Analysis (cont.)
Focus on a specific instance

afb dpop dsa mgm2 postpone elevate skip centralized
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What About Auctions? And other Decision Criteria?
[Hamadi and Picard, 2024]
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Figure: Average values over 20 instances for several performance metrics with increasing number of UAVs.
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What About Auctions? And other Decision Criteria? (cont.)
[Hamadi and Picard, 2024]
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Figure: Results for one simulation with 25 UAVs and 10 emergency procedures (gray dashed) and 46 incidents (gray
dotted).
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Conclusions

To sum up...
• Auctions and DCOPs are powerful tools to install coordination in cooperative collectives
• Many potential applications

• On-demand transport, UTM, Satellite constellation management, IoT, Smart grids, …
• Agency as a way to install encapsulation and explanability

To go beyond...
• Non cooperative settings
• Hybrid AI: learning and approximating costs
• Security of coordination protocols
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Thank you for your attention!
Any question?
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