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Résumé
Les réseaux temporels simples avec incertitude (STNU)
sont un modèle basé sur les contraintes conçu pour vérifier
la contrôlabilité temporelle d’un plan sous incertitude
(lorsque certaines durées contingentes ne peuvent être
déterminées par l’agent de planification). Quoi qu’il
en soit, dans les cas de planification multi-agents ou
dépendante des ressources, il peut être possible de
négocier ou de reconsidérer la flexibilité exogène et
d’ajuster les limites des durées incontrôlables. Plusieurs
travaux proposent une solution optimale à ce problème
de réparation selon les trois niveaux de contrôlabilité
(faible, dynamique, forte). Cependant, aucun d’entre eux
ne caractérise la complexité théorique de ce problème.
Cet article propose une évaluation approfondie de la
complexité du problème de réparation pour les STNU.

Mots-clés
Complexité, satisfaction de contraintes, incertitude
temporelle, réseaux temporels.

Abstract
Simple Temporal Networks with Uncertainty (STNU) are
a constraint-based model designed to check the temporal
‘controllability’ of a plan under uncertainty (when some
contingent durations cannot be decided by the planning
agent). Anyway, in multi-agent or resource-dependent
planning cases, it may be possible to negotiate or
reconsider exogenous flexibility and adjust the bounds
of the uncontrollable durations. Several works exist
that provide the optimal solution to this repair problem
depending on the three controllability levels (Weak,
Dynamic, Strong). However, none of them characterize
the theoretical complexity of this problem. This paper
will provide a thorough complexity evaluation of the repair
problem for STNU.

Keywords
Complexity, constraint satisfaction, temporal uncertainty,
temporal networks.

1 Introduction
In many domains one needs to reason on activities that
may or must not overlap in time, last over some duration,
and synchronize with timestamped expected events. That
is particularly true in planning and scheduling, where
existing systems often use some explicit constraint-based
representation [6, 18, 17, 4].
An efficient model for managing temporal durations is
the Simple Temporal Network (STN) [8]: nodes are
timepoints, and edges are constraints expressing convex
intervals of possible durations between them. STNs
are widely used to check a plan’s temporal consistency.
Consistency checking is made through polynomial-time
propagation algorithms (e.g., the Floyd-Warshall reduction)
and provides a complete minimal network in which all
inconsistent values are removed [8]. This minimal network
can be passed on to the plan execution manager, which
can take any value on the domain of the first activity to
schedule, repropagate, and so on iteratively.
A well-known extension of STNs that handles
uncertainties, called STNU (Simple Temporal Network
with Uncertainty), has been proposed by [19]. An
STNU contains uncertain (contingent) durations between
time-points, which means the effective duration is not
controlled by the agent executing the plan. This is useful
for addressing realistic dynamic and stochastic domains.
Temporal consistency is then redefined as controllability:
an STNU is controllable if a strategy exists for executing the
plan, whatever the values taken by the contingent durations.
Three levels of controllability exist that depend on when the
contingents’ duration will be known: just before execution
(Weak), during execution (Dynamic), or never (Strong).
Checking is one thing, but what to do when a plan is
temporally uncontrollable has received less attention. There
are many ways to respond to that at different levels. The
highest is replanning, i.e., reconsidering the course of
actions leading to the goal. Then, one may only reason
at the scheduling level: switching the order of mutually
exclusive actions, swapping a resource for another faster



one, etc; such changes are lighter and could be sufficient to
change some durations for the better. Last, the lightest thing
to do is only to alter the temporal durations themselves,
if possible. But the durations that the executing agent
controls have already been shrunk as much as possible by
propagation algorithms (as in any constraint-based model),
while altering a contingent duration is impossible and even
forbidden as it is controlled by some other entity, often
Nature itself.

In [15], the authors argue that contingents may be reduced
in some applications in which their durations depend on
the plan quality measured through some utility of chosen
actions. Hence, they proposed some algorithms that reduce
contingents to recover controllability (of STNUs) even if it
results in solutions of lesser quality.

For instance, the uncertain duration of a data downloading
for an observation satellite may depend on the (exogenous)
imprecise size of such data: forcing a lower upper bound
is possible, meaning sending incomplete or less detailed
data in extreme cases, resulting in a lower quality of
the plan. Another example is in manufacturing cells in
which machines are set up (speed, tools) to provide the
best quality, and production plans are generated in such
a framework; but it is still possible in case of temporally
uncontrollable plans to change those settings, e.g., by
authorizing higher speed, at the price of a lower quality:
in section 4 we will provide a more precise example under
such assumptions.

In other words, Nature there appears to be some external
entity, not involved into the planning and executing
processes, but over which some preprocessing control is
still possible.

More interesting is the case of multi-agent planning, as
replanning is a last-resort solution there, as it will impinge
on the coordinated execution of the whole group; the most
local and least committed repair will be sought. Moreover,
uncertainty often comes from the decisions of other agents:
an activity duration being decided by some other agent, but
shared just before execution, or during execution, or not
communicated at all. In that regard, the authors in [16]
proposed a new multi-agent model for STNUs that define
such a particular constraint called contract, and proposed
some algorithms to repair any non-controllable STNU by
reducing these contracts.

These scenarios show the relevance of the STNU Repair
problem (but also in higher classes of Temporal Networks
under Uncertainty). However, there exists no formal proof
of its computational complexity: this paper aims to fill the
gap.

In the remainder we first expose the necessary background
on STNUs and some related work in Sections 2 and 3.
Then, in Sections 4 and 5, we characterize the STNU Repair
problems in a new way and based on that we present our
study of their complexities. Next, we will discuss the case
of repairing for multiple agents in Section 6. Finally, we
will conclude our study with some prospects.

2 Background
2.1 Simple Temporal Network
A Simple Temporal Network (STN) [8] is a tuple xV, Ey,
where V is a set of real-value variables called timepoints
tv0, . . . , vnu, and E is a set of temporal constraints between
these timepoints called requirements [8]. Specifically, each
requirement constraint ek P E is of the form vj´vi P rl, us,
with vi, vj P V , l P R Y t´8u, and u P R Y t`8u. l
and u represent the minimal and maximal possible temporal
distance between vi and vj . A requirement constraint can
be represented also as an edge vi

rl, us
ÝÝÑ vj .

A reference timepoint v0 is generally included in V as
a fixed temporal anchor for all other timepoints. v0 is
assumed to be the first executed timepoint of the network,
i.e., there is an implicit constraint v0 ď vi for each vi P V .
An STN is consistent (i.e., satisfiable) if an assignment
(schedule) to timepoints exists that satisfies all the
constraints. We say that a controller executes an STN when
it schedules its timepoints. Consistency checking is done
in polynomial time and achieved by transforming an STN
into a distance graph. A distance graph is a directed graph
where each requirement constraint (vi rl, us

ÝÝÑ vj) is split into

two edges: vi
u

ÝÑ vj and vj
´l

ÝÑ vi allowing positive and
negative weights. An STN is inconsistent if its distance
graph contains a negative cycle, which can be detected
using shortest-path algorithms.

2.2 STNs with Uncertainty
An STN with Uncertainty (STNU) is an extension of STNs
in which one distinguishes a subset of constraints whose
values (duration) are decided by external entities (i.e.,
Nature) and the controller can only observe [19].

Definition 1 (STNU). An STNU is a tuple xV, E, Cy with:

• V “ Vc Y Vu is a set of timepoints: Vc, the set of
controllable timepoints, and Vu, the set of contingent
(uncontrollable) ones.

• E is a set of requirement constraints as in an STN.

• C is a set of contingent links. A contingent link ck is
of the form vj ´ vi P rl, us, where vi P Vc, vj P Vu,
and 0 ď l ď u. The value ωk “ vj ´ vi is called
duration, and an external entity decides it before or
during execution. Once vi is executed, the value of vj
is vi ` ωk. Any ck is also depicted as vi

rl, us
vj .

Definition 2 (Schedule). A schedule for an STNU X is a
mapping δ : V Ñ R from timepoints to real values.

Definition 3 (Situation, Projection and Solution). Given an
STNU X “ xV, E, Cy, the situations of X is a set of tuples
Ω defined as the Cartesian product of contingent domains:
Ω “

Ś

ckPCrl, us. Each situation ω “ tω1, . . . , ωnu P

Ω represents one possible complete set of values for the
duration of the contingent links of X . A projection Xω “

pV, E Y Cωq of X is an STN where Cω “ trωk, ωks | ck P



Cu. A solution of Xω is a schedule δω satisfying all the
constraints.

Intuitively, a projection replaces each contingent link with
a rigid requirement constraint, i.e., a constraint reduced to a
one-value range associated with each contingent link in ω.
In STNUs, consistency needs to be redefined: a network
is now said to be controllable if there exists a schedule
that satisfies all requirement constraints in any possible
projection.

Definition 4 (Decision and Observation). @vi P Vc, decpviq
is the instant at which δpviq is decided by the controller.
@ωk P C, obspωkq is the instant at which ωk is observed by
the controller.

The controllability properties were defined in [19], and
their semantics refined in [16]: Strong Controllability
(SC) assumes one common schedule δ satisfies all
constraints for all situations, which is relevant when
external events durations cannot be observed (conformant
planning). On the contrary, Weak Controllability (WC)
assumes there is one consistent schedule for each situation,
which is relevant when all contingent durations will be
known just before execution (oracle). In-between, the
Dynamic Controllability (DC) assumes the schedule values
assignment depends on past observations only, regardless
of the contingent durations still to be observed.

Definition 5 (Weak Controllability (WC)). An STNU X is
weakly controllable iff @ω P Ω, Dδ s.t. δω is a solution of
Xω .
Execution semantics: @ωk P ω, obspωkq “ v0, and the
decision policy is free: @vi P Vc, decpviq ď vi.

Definition 6. (Strong Controllability (SC) with
Execution) An STNU X is strongly controllable iff
D δ such that @ω P Ω, δ is a solution of Xω .
Execution semantics: @vi P Vc, decpviq “ v0, and the
observations are free: possibly no observation (@ωk P ω,
obspωkq “ H) or observations during execution that will
just update the bounds of the constraints in the network.

Definition 7. (Dynamic Controllability (DC) with
Execution) An STNU X is Dynamically controllable
iff it is Weakly controllable and @vi P Vc,@ω, ω1 P Ω,
ωĺvi “ ω1ĺvi ùñ δωpviq “ δ1

ωpviq
where ωĺv “ tωk P ω s.t. obspωkq ĺ decpvqu is the part
of the situation ω in which contingent constraints values
are observed before executing v.
Execution semantics: @ωk P ω, obspωkq=endpckq, and
@vi P Vc, decpviq “ vi

Dynamic and Strong Controllability have proven to be
retractable and solvable in polynomial time [19, 10], while
WC has been proven to be a co-NP complete problem [12].
In fact, DC and WC checking rely on algorithms that look
for negative cycles in the distance graph of STNUs [10, 15].

3 Related Work
The notion of repair arises in [5]. They introduced a
Multi-agent STNU (MaSTNU) model in which agents
have their own plans, and hence own temporal networks,
but all face common exogenous contingent constraints.
They proposed a new algorithm for checking the Dynamic
Controllability (DC) of MaSTNU using a Mixed Integer
Linear Programming (MILP) approach. The authors claim
that it should be possible to modify the encoding to reduce
the bounds of the contingents so that all networks are DC.
Then, in [2], the authors compute the volume space of
an STNU to assess just how far from being controllable
an uncontrollable STNU is by defining some metrics for
Strong and Dynamic Controllability. Later, they propose an
incomplete Linear Programming approach to repair a non-
DC STNU by repairing the negative cycles [3]. However,
it is incomplete because it assumes that negative cycles are
independent, which is not always the case.
Recently, the repair problem for STNU was formally
defined in [15]. The authors tackle the case of WC and SC
through Satisfiability Modulo Theory (SMT) and propose
an optimization function that finds the minimal reduction
of the contingent bounds to repair the network.
Later on, they proposed a distributed extension of STNUs
called Multi-Agent Interdependent STNUs (MISTNU) that
introduced the notion of contract, a shared constraint being
controllable for one agent but contingent for others [16].
Hence, a contingent, being now actually controlled by
another agent of the system (that is not Nature), becomes
negotiable, making the repair problem of STNU clearly
more relevant than in MaSTNU. In addition, they extend
the SMT encodings to repair non-controllable MISTNU.
However, such encodings are sensitive to the number of
contingents/contracts, hence, poorly scalable. Therefore,
they argue that using propagation-based algorithms to
identify and repair sources of uncontrollability should be
more efficient and scalable.
In that regard, the closest related works that focus on
STNUs and diagnosis, i.e., pinpointing reasons for non-
controllability, address DC [11] and WC [14] by providing
new checking algorithms that are informed, i.e., that return
the sources of uncontrollability in the form of negative
cycles in the distance graph of STNU. Please note that
the former approach [11] for DC returns only one negative
cycle at a time. Hence, one must use an iterative process to
repair all of them. Yet, no repair algorithm currently exists
that is based on these informed algorithms.
In this paper, we are interested in evaluating the theoretical
complexity of the repair problem. Therefore, the following
section will generalize the previous studies by introducing
different types of repair problems relevant enough for
STNUs to determine their complexity.

4 Repair Problems
In this section, we formally define the repair problems. In
the following definitions, τ stands for any controllability
level in tS,D,Wu (standing for “Strong”, “Dynamic”,



and “Weak”, respectively). We start with some new
fundamental notions.

Definition 8 (Tightening and τ -repair). Let X “ xV, E, Cy

be an STNU. A tightening of X is a set of ordered pairs ρ “

xxc1, rl11, u
1
1sy, . . . , xck, rl1k, u

1
ksyy such that c1, . . . , ck P C

are pairwise distinct contingent constraints of X and for
i “ 1, . . . , k, if ci is v

rli, uis
v1, then li ď l1i ď u1

i ď ui

holds. We write X ‘ ρ for the STNU xV, E, C 1y, where C 1

is obtained from C by replacing each ci by v
rl1

i, u
1
is

v1.
A τ -repair is a tightening such that X ‘ρ is τ -Controllable.

Definition 9 (Repair Problem). τ -REPAIR is the decision
problem:

• Input: An STNU X

• Question: Is there a τ -repair ρ of X?

Definition 9 introduces a basic formulation of the repair
problem. However, this minimal definition may not be
sufficient in more realistic settings. Depending on the
environment, such as the influence of Nature or other
agents, or on specific optimization criteria and performance
metrics relevant to the agent’s objectives, a more refined
definition may be required.
In order to define such refined definitions, we first
introduce additional notation; let X be an STNU, ρ “

xxc1, rl11, u
1
1sy, . . . , xck, rl1k, u

1
ksyy a tightening of X , and

lj , uj the lower and upper bounds of cj in X ; then we write

• Supppρq for the set tj P t1, . . . , ku | l1j ‰ lj _

u1
j ‰ uju, i.e., the set of constraints actually (strictly)

repaired by ρ;

• Costpρq for the quantity
ř

j“1,...,k l
1
j´lj`uj´u1

j , i.e.,
the sum of all interval reductions over all contingent
constraints.

Definition 10 (Partial Repair). PARTIAL-τ -REPAIR is the
following decision problem:

• Input: An STNU X and a subset R of its contingent
constraints

• Question: Is there a τ -repair ρ of X such that
Supppρq Ď R?

The partial repair problem is relevant when only a subset of
contingent durations can be reduced, such as in multi-agent
settings where some durations are negotiable (e.g, belong
to another agent) while others, controlled by Nature, must
remain fixed.

Definition 11 (k-Budget Repair). k-BUDGET-τ -REPAIR is
the following decision problem:

• Input: An STNU X and a rational number k

• Question: Is there a τ -repair ρ of X with Costpρq ď

k?

The k-budget repair problem is particularly relevant
in scenarios where optimizing a specific parameter is
important, such as minimizing cost [7, 20], or maximizing
flexibility or fairness among agents in multi-agent settings
[16].

Definition 12 (k-constraint repair). k-CONSTRAINT-τ -
REPAIR is the following decision problem:

• Input: An STNU X and an integer k

• Question: Is there a τ -repair ρ of X with |Supppρq| ď

k?

The k-constraint repair problem is also relevant for
optimization in multi-agent settings, where minimizing
communication costs amounts to looking for the smallest
set of contingents to negotiate.
To better grasp the STNU model and the different repair
problems, we provide a realistic example, inspired by the
application framework discussed in the Introduction, in
Example 1.

Example 1. Bob operates on a production line involving
two machines, M1 and M2. Each day, a manager
determines the production requirements following
predefined regulations. The process begins with M1

transforming raw materials into components. Bob then
performs a quality check before passing the components to
M2, which completes the final product. The durations of
tasks executed by M1 and M2 are uncertain, ranging from
5–12 minutes and 10–15 minutes, respectively, while Bob’s
task is controllable and takes between 5–15 minutes. The
overall process must be completed within a time window
of 25 to 30 minutes. To guarantee feasibility, the manager
may adjust the machines’ speed before execution, but at a
cost.

Figure 1 illustrates Bob’s scheduling problem. The STNU
is not weakly controllable, and a repair solution is shown
with new bounds on M1 and M2. WC semantics is chosen
here for its simplicity.

5 Complexity of Repair Problems
This section provides complexity results for the different
types of repair problem (see Definitions 9, 10, 11 and
12) according to the semantics of the three controllability
levels. The results of our study are summarized in Table 1.

Problem Strong Dynamic Weak
Controllability P [19] P [10] coNP-comp [12]

Repair P P P
Partial repair P in NP coNP-hard and in ΣP

2

k-budget repair P in NP coNP-hard and in ΣP
2

k-constraint repair NP-comp NP-comp coNP-hard and in ΣP
2

Table 1: Complexity of controllability and repair problems
(“comp” is short for “complete”).



v0

v1 v2

v3

(M1) r5, 12s r10, 15s (M2)
r5, 15s

r25, 30s

ck Repair Partial R. (M1) 2-Budget R. 1-Cons. R.
M1 [10, 10] [7, 7] [5, 11] [5, 12]
M2 [10, 10] [10, 15] [10, 14] [10, 10]

Figure 1: STNU of Example 1 where nodes represent timepoints
(doubly circled ones are uncontrollable), edges are requirements
and contingent constraints (the later relating to the tasks of
machines M1 and M2). The STNU is not WC due to the
highlighted projection ω “ tω1 “ 12, ω2 “ 15u. The table
highlights a solution to each type of repair problem.

5.1 Complexity of the Repair Problem
We study here the repair problem from definition 9, i.e.,
without an optimization criterion. We first introduce a
straightforward lemma, which shows that when repairs are
unconstrained, we can consider only repairs to singleton
intervals without loss of generality, and additionally that we
can restrict to rational numbers, of size polynomial in the
size of the STNU. In fact, this is the same as considering
a discretization of the intervals of the contingents with a
polynomial number of possible values.

Lemma 1. Let τ P tS,D,Wu be a level of
controllability. If an STNU X has a τ -repair
xxc1, rl11, u

1
1sy, . . . , xck, rl1k, u

1
ksyy, then there exist

b1, . . . , bk such that xxc1, rb1, b1sy, . . . , xck, rbk, bksyy

is also a τ -repair of X .

Proof. All three levels of controllability require that for
all situations generated by the contingent constraints,
the STNU is controllable. Hence, tighter bounds
on the contingents can only make an STNU more
controllable.

Proposition 1. Problems S-REPAIR, W-REPAIR and D-
REPAIR are solvable in polynomial time.

Proof. Lemma 1 shows that for all three levels of
controllability, the repair problem has a solution if and
only if it has one in which all contingent constraints are
repaired to singleton intervals. Moreover, for a tightening
ρ of X “ xV,E,Cy in which all the contingent constraints
of X are repaired to singleton intervals, the STNU X ‘ ρ
is now an STN, since contingent durations are known (i.e.,
fixed).
It follows that we only have to search a value αc P rl, us

for each contingent c “ vi
rl, us

vj P C, such that the
STN obtained from X by replacing each such c by the
requirement vi rαc, αcs

ÝÝÝÑ vj , is satisfiable. This can clearly be
done by solving a system of linear equations, as illustrated
on Figure 2.

v0

v1 v2

v3

rα1, α1s rα2, α2s

r5, 15s

r25, 30s

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

v1 ´ v0 ď α1; v1 ´ v0 ě α1

v3 ´ v2 ď α2; v3 ´ v2 ě α2

v3 ´ v0 ě 25; v3 ´ v0 ď 30

v2 ´ v1 ě 5; v2 ´ v2 ď 15

5 ď α1 ď 12; 10 ď α1 ď 15

Figure 2: Searching for a valid tightening of contingent
constraints ρ “ xxc1, rα1, α1sy, . . . , xc2, rα2, α2syy of the STNU
of Figure 1 is equivalent to solving consistency of a polynomial
size linear system where each αi are variables.

5.2 Optimization Repairs for Strong
Controllability

In this section, we will provide a new and polynomial
algorithm for repairing a non-SC STNU that can be adapted
for the partial and k-budget repair problems. For the
k-constraint repair problem, we will reduce it to the
SUBSET-SUM problem to prove that it is NP complete.
In [19], the authors prove that checking Strong
Controllability can be reduced to solving a system of
linear equations over the requirement constraints. In
fact, any STNU can be encoded the same way as for
STNs (see Figure 2) by replacing in the equations each
uncontrollable timepoint vj P Vu by the relation between a
controllable timepoint it relates to and the uncontrollable
duration of the contingent constraint between them. The
most obvious case is the one of a requirement constraint
vi

rl, us
ÝÝÑ vj where vj is uncontrollable and relates to

vk
rl1, u1

s
vj : in that case we write vj ´ vi P rl, us as

follows:

#

pvk ` ωjq ´ vi ě l

pvk ` ωjq ´ vi ď u

There exist three cases where an uncontrollable timepoint is
involved: the one we showed where vj P Vu, the one where
vi P Vu, and where vi P Vu and vj P Vu. Nonetheless,
the methodology remains the same, leading to a system of
linear equations of polynomial size.
One can see that a schedule that satisfies such a system,
whatever the duration of ω “ tω1, . . . , ωnu, is a ’strong’
schedule that satisfies the SC Definition 6. Hence, if a
schedule exists where for each linear equation ω takes
the worst possible value, then such a schedule is a strong
schedule. The worst possible value for ω is when the
contingents take their lower/upper bound value. Thus,
finding a solution is done in polynomial time. Figure 3
shows the encoding of checking SC with the STNU of
Figure 1. First, we show with ω1 and ω2, then with the
worst possible value for ω1 and ω2 in each linear equation.
Formally, we have the following.

Proposition 2 ([19]). Given an STNU X , one can build



v0

v1 v2

v3

r5, 12s r10, 15s

r5, 15s

r25, 30s

#

pv2 ` ω2q ´ v0 ě 25; pv2 ` ω2q ´ v0 ď 30

v2 ´ pv0 ` ω1q ě 5; v2 ´ pv0 ` ω1q ď 15
#

pv2 ` 10q ´ v0 ě 25; pv2 ` 15q ´ v0 ď 30

v2 ´ pv0 ` 12q ě 5; v2 ´ pv0 ` 5q ď 15
$

’

&

’

%

pv2 ` L1q ´ v0 ě 25; pv2 ` U1q ´ v0 ď 30

v2 ´ pv0 ` 15q ě 5; v2 ´ pv0 ` 10q ď 15

5 ď L1 ď U1 ď 15

Figure 3: Reduction resulting from checking Strong
Controllability. The two requirements to encode illustrate
the first two cases of uncontrollable timepoints: vi P Vu with v1,
and vj P Vu with v3. We highlight the worst-case scenario for
each linear equation with the bounds’ value. Then, the encoding
to the partial-Strong-repair problem by replacing M1’s values
(bounds) with proper variables L1 and U1.

in polynomial time a linear program over one variable
per requirement constraint of X , such that the solutions
of this program are in one-to-one correspondence with the
schedules which ensure that X is strongly controllable.

Proposition 3. Problems PARTIAL-S-REPAIR and k-
BUDGET-S-REPAIR are solvable in polynomial time.

Proof. Given Proposition 2, it is easy to build a
linear program of polynomial size which decides partial
repairability, and k-budget repairability:

• for partial repairability, we replace in the linear
program of Proposition 2, each numeric value
corresponding to a lower (resp. upper) bound of a
repairable contingent constraint c “ v

rl, us
v1, by

a new variable L (resp. U ), and we add linear
constraints l ď L ď U ď u; it is then easy to see that
the solutions of this linear program are in one-to-one
correspondence with the repairs (of each c to rL,U s)
and the corresponding strong schedules of the STNU.
Figure 3 illustrates the encoding for the partial-Strong-
repair of Figure 1 assuming only M1 can be reduced;

• for k-budget repairability, we similarly replace the
numeric values of all contingent constraints, again
enforce l ď L ď U ď u for all of them, and
additionally enforce the linear constraint:

ÿ

v
rl, us

v1PC

pL ´ l ` u ´ Uq ď k

Proposition 4. Problem k-CONSTRAINT-S-REPAIR is
NP-complete.

Proof. For membership in NP, one simply need to guess
a tightening ρ, consisting of the new bounds l1, u1 for at
most k contingent links, then check that X ‘ ρ is strongly
controllable (in polynomial time using Proposition 2).
Since STNUs consist of linear constraints only, it is easy
to see that one can restrict to guessing polynomial-size
numbers (in the size of the numbers appearing in the
STNU).
For hardness, we give a reduction from SUBSET-SUM,
which is defined as follows and known to be NP-complete
[9, Sec. A3.2].

• Input: A multiset of (strictly) positive integers
ttn1, . . . , nℓuu and
an integer N

• Question: Is there I Ď t1, . . . , ℓu satisfying N “
ř

iPI ni?

Given an instance S “ xttn1, . . . , nℓuu, Ny, we write
M “

řℓ
i“1 ni, and we define an STNU XS derived from

the multiset S as follows (see Figure 4):

• the set of controllable timepoints is V S
c “

tv0, v1, . . . , vℓu, with v0 acting as the reference
timepoint, and the set of uncontrollable timepoints is
V S
u “ tvy1, . . . , v

y
ℓu Y tvn1, . . . , v

n
ℓ u;

• the set of requirement constraints is ES “

tey1, . . . , e
y
ℓuYten1, . . . , e

n
ℓuYteNu, with eyi “ vyi

r0, nis
ÝÝÝÑ

vi, eni “ vni
r0,`8s

ÝÝÝÑ vi (i “ 1, . . . , ℓ), and eN “

v0
rM ` N,M ` N s

ÝÝÝÝÝÝÝÝÑ vℓ;

• the set of contingent constraints is CS “

tcy1, . . . , c
y
ℓu Y tcn1, . . . , c

n
ℓu, with cyi “ vi´1

r0, nis
vyi

and cni “ vi´1
rni, 2nis

vni (i “ 1, . . . , ℓ).

Moreover, we define the number of repairable constraints k
to be ℓ.
Clearly, XS can be constructed in polynomial time given S.
We now claim that S is a positive instance of SUBSET-SUM
if and only if XS is k-constraint strongly repairable.
First assume that I is a solution of S, that is, N “
ř

iPI ni holds. We define the k-constraint tightening ρI

to be xxcyi , rni, nisy | i P Iy ¨ xxcnj , rnj , njsy | j R Iy

(¨ denotes concatenation of tuples). Since exactly one
constraint per index i P t1, . . . , ℓu is repaired, we indeed
have |SupppρIq| ď k. Finally, we define a set of decisions
dec by decpviq “

ř

jďi nj `
ř

jďi,jPI nj for i “ 0, . . . , ℓ
(in particular, decpv0q “ 0). Then it is easy to prove that the
schedule δ induced by dec and ω satisfies all the constraints
in ES , so that ρI is a k-constraint strong repair of XS .
Conversely, assume that ρ is a k-constraint strong repair of
XS . We first show that for i “ 1, . . . , ℓ, ρ repairs either
cyi or cni to rni, nis. For contradiction, assume first that it
repairs neither, and let ω be a situation with ωpcyi q “ 0 and
ωpcni q “ 2ni; then in order to satisfy constraints eyi and eni ,
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Figure 4: The STNU XS built from an instance S of SUBSET-SUM.

a schedule δ must satisfy

δpvi´1q ` 2ni “ δpvi´1q ` ωpcni q ď δpviq ď

δpvi´1q ` ωpcyi q ` ni

“ δpvi´1q ` ni,

contradicting ni ą 0. Hence ρ repairs at least one of cyi and
cni for each i “ 1, . . . , ℓ, and given the budget of k “ ℓ
constraints, it must repair exactly one for each i.
First consider the case when ρ repairs cyi , and let δ be a
strong schedule in the repaired STNU. Then δ is valid in
particular for a situation ω with ωpcni q “ 2ni, so that we
have

δpvi´1q ` 2ni “ δpvi´1q ` ωpcni q ď δpviq ď

δpvi´1q ` ωpcyi q ` ni,

which entails ωpcyi q “ ni and (hence) δpviq “ δpvi´1q `

2ni. Dually, if ρ repairs cni and δ is a strong schedule
in the repaired STNU, then considering a situation ω with
ωpcyi q “ 0, we have

δpvi´1q ` ni “ δpvi´1q ` ωpcyi q ` ni ě δpviq ě

δpvi´1q ` ωpcni q,

which entails ωpcni q “ ni and δpviq “ δpvi´1q ` ni.
In the end, a strong schedule δ in the repaired STNU
satisfies for each i “ 1, . . . , ℓ either δpviq “ δpvi´1q ` ni

or δpviq “ δpvi´1q`2ni. Hence it satisfies δpvℓq´δpv0q “

M `
ř

iPI ni for some subset I of t1, . . . , ℓu; moreover, it
satisfies δpvℓq ´ δpv0q “ M ` N due to constraint eN , so
ř

iPI ni “ N holds and S is a positive instance of SUBSET-
SUM.

5.3 Optimization Repairs for Dynamic
Controllability

This section will show that partial-Dynamic-repair and k-
budget Dynamic repair problems are in NP, while the k-
constraint Dynamic repair is NP-complete.

Proposition 5. PARTIAL-D-REPAIR and k-BUDGET-D-
REPAIR are in NP.

Proof. The proof is similar to that for Strong repair
(Proposition 4): we can guess a repair and then check that
it is indeed a repair in polynomial time [13].

Proposition 6. Problem k-CONSTRAINT-D-REPAIR is
NP-complete.

Proof. Membership in NP follows exactly from the same
reasoning as in the proof of Proposition 5. For hardness,
we use exactly the same reduction as in the proof of
Proposition 4, and we show that XS is k-constraint strongly
repairable if and only if it is k-constraint dynamically
repairable. One direction is obvious, since by definition
Strong controllability implies Dynamic controllability.
Conversely, the proof that at least one contingent link per i
(and hence exactly one) must be repaired applies verbatim
from Proposition 4. Now for i P t1, . . . , ℓu, let δi be a
dynamic schedule in the repaired STNU, for the case when
ω satisfies ωpcni q “ 2ni (resp. ωpcyi q “ 0) if cyi (resp. cni )
has been repaired. Then δi is fixed, and the same reasoning
as in the proof of Proposition 4 applies, concluding that X
is (k-constraint) strongly repairable.

5.4 Optimization Repairs for Weak
Controllability

This section will show that partial-Weak repair, k-budget
Weak repair, and k-constraint Weak repair problems are at
least coNP-hard and at most in ΣP

2 .

Proposition 7. PARTIAL-W-REPAIR, k-BUDGET-W-
REPAIR and k-CONSTRAINT-W-REPAIR are coNP-hard.

Proof. We consider particular cases for which the problem
comes down to checking Weak Controllability which is
known to be coNP-complete [12]. By setting R “ H, and
k “ 0, then no contingent can be repaired and the STNU is
repairable if and only if it is weakly controllable. Therefore,
all of them are as hard as the problem of checking WC.

Proposition 8. PARTIAL-W-REPAIR, k-BUDGET-W-
REPAIR and k-CONSTRAINT-W-REPAIR 1 are in ΣP

2 .

Proof. It is possible to guess in polynomial time a
tightening ρ such that Supppρq Ď R for the partial-Weak
repair problem, Costpρq “ k for the k-budget Weak repair

1We recently found a proof that k-constraints Weak repair problem is
ΣP

2 -complete. Indeed, Morris et al. proposed a reduction of the famous 3-
color problem to WC checking of STNUs [12]. We can extend their proof
to reduce the problem 2-round 3-colorability, which is known to be ΣP

2 -
complete [1, Theorem 11.4], to k-constraints Weak repair problem. The
completeness remains open for the other two repair problems.



problem, and |Supppρq| “ k for the k-constraint Weak
repair problem. Checking that X ‘ρ is weakly controllable
can be verified by a coNP oracle. Hence, we get the
membership to ΣP

2 .

6 The Multi-agent Case
In this section, we discuss the complexity of the repair
problem for more than one agent. For instance, the
repair problem for MISTNU is more than relevant and
determining its complexity is more challenging [16].
There exist two ways of repairing STNUs in a multi-agent
system. One can try to centralize the repair problem
using some global function that merges the local repair
problem of each agent into a big problem. This is possible
when formulating the problem using a first-order formula
or a system of equations to solve as done in [5, 16]. In
that particular case, where the repair problem is solved
in a centralized way, its complexity remains the same as
repairing only one STNU.
The real challenge arises when solving the repair problem
distributedly is required. More (external) criteria exist
that may influence the hardness of the repair problem,
related to the information that is exchanged and the size
of the messages, which can grow exponentially, or to
communication failure or possible delays (of uncertain
duration), zone of communication (dependent on the
application) that can impact when information will be
known; related to the nature of the agent (cooperative or
selfish); or related to the global architecture and policy
of the agents: pre-existing hierarchy, or on the contrary
fairness issues; etc. Therefore, depending on the scenario,
one repair may be harder than another and, thus, does not
belong to the same class. Nonetheless, this would require a
thorough evaluation of the distributed repair problem.

7 Conclusion
In this paper, we studied the complexity of the repair
problem for STNU by introducing four definitions of
this problem. We evaluated each of them regarding the
semantics of each controllability level. At the same time,
we proved their completeness for most of them. The
problem remains open for some of them.
Future works will study the complexity of the repair
problem for the higher class of Temporal Network with
Uncertainty not only for the single agent case, but also for
the multi-agent case.
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