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Résumé

En combinant logique possibiliste et modeles numériques
linéaires, nous proposons un nouveau moyen d’inférer sur
une base de croyances. Via 'introduction de degrés d’in-
certitudes, nous pouvons inférer malgré la présence d’in-
consistence dans les informations fournies, et éventuelle-
ment les remettre en cause. Nous montrons que méler mo-
deles numériques et symboliques permet des inférences syn-
taxiques efficaces. Le tout est illustré a travers un exemple
de l'aide a la décision multi-criteres.
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1 Introduction

In this paper, we propose a new framework for reasoning
on a belief base. We use the term belief as the statements
forming our base are possibly uncertain. In multiple
fields, as in Multi-Criteria Decision Aiding (MCDA), it
is common to reason over statements from the Decision
Maker (DM), that are often uncertain. The purpose of
the process is to help her' choose an alternative among
several, each defined on a set of criteria. Her preferences
are formalized as statements, from which it is possible
to infer. With the hypotheses that her preferences can
be modelled by a numerical model, each statement is
a constraint that reduces the set of possible models.
For a review of the numerical value models used to
represent preferences, see [ ]. Many
frameworks for MCDA have been developed over the
years. Classical DM preferential information consists
of pairwise comparisons of alternatives, the pairs are
usually chosen through some heuristics with the idea
of improving the model fitness [ 1.
Translating this statement into constraints is usually
done by excluding all models that do not satisfy the new
constraint. An example of this kind of process can be
found in [ ], where the
UTA framework is introduced. In [ 1,

1. We use the neutral feminine for the DM

it is extended to a robust framework. While pointwise
models aim at finding a single value of the parameter of
the model, which is usually done by minimizing some
loss function, robust MCDA frameworks can make an
inference only if all of the totally possible models support
the inference. This differs from non-robust models, where
procedures are applied to choose one of the models and
use it to infer. Unfortunately, if the statements received are
contradictory, inconsistency can appear during the process.
In other words, there are no totally possible models. It may
be caused by an error from the DM, or an error when the
model was selected by the analyst. If all statements are
considered certain, the situation is tricky, as a choice has
to be made to continue the process. Previous work tends to
solve the problem by removing formulas that cause incon-
sistency, as in [ s ].
However, if all statements are certain, removing one seems
counter-intuitive.

To address this issue, [ ] proposes as an
extension to associate a degree of credibility with each
piece of information contained in the base. This idea has
been developed in [ ], where
belief bases are combined with reasoning under inconsis-
tency. The paper proposes to represent beliefs within the
scope of possibility theory. Possibility theory has been
developed thanks to the preliminary work of Zadeh in
[ ]. It is built upon fuzzy sets, sets where each
element has an ordinal priority degree associated. Within
possibility theory, the degree of priority is the degree of
credibility of each statement. For a complete overview
of the possibility theory, we invite the reader to refer to

[ , 1.

As well as providing a representation of uncertainty,
possibility theory is of interest when it comes to reasoning
as it introduces logic tools to infer over a set of beliefs
stratified by credibility, as in [ ]. As each
statement is uncertain at a given degree, it is possible to
attach a certainty degree to pieces of information deducted
from the base, depending on which statement allow the
deduction. This reinforces the trust the analyst has in the
presented deductions. Furthermore, tools for reasoning



under inconsistency in possibilistic logic are developed in
[ ]. These tools have not been used in
[ ] where they introduce nume-
rical ones for reasoning. We believe that the semantics for
reasoning under inconsistency from possibilistic logic are
interesting, as they permit the definition of computationally
good syntaxes providing certificates for the analyst. Hence,
the aim of this article is to use the possibilistic reasoning
framework with linear numerical models. The benefits
of this combination are the appearance of the degree of
credibility and the tools for reasoning provided by the
logical framework.

A research gap also exists within possibility theory,
where little attention was given to computational results.
[ ] proposes algorithms and computational
results when the beliefs are expressed using propositional
logic. There is a need to define syntaxes for possibility
theory applied to beliefs expressed as numerical formulae
and give computational results. These syntaxes should
be created while keeping in mind the explanation, as in
[ s ], process
that plays a significant part in the trust that our analyst will
place in our decisions. Even though this is not the current
scope of our work, this is a natural extension.

Section 2 will present possibility theory and the semantics
of possibilistic logic, as seen in the literature. In Section 3,
we restrict our universe to beliefs expressed as linear in-
equalities. We develop new syntaxes for inferring and give
computational results. In Section 4, we give a possible ap-
plication of our logic of linear comparison, MCDA. Our
proposal is discussed regarding the literature in Section 5.
We end the paper with some conclusions in Section 6.

2 Possibilistic logic : semantics

Let us have 2, the set of states of the world, with w € €,
a state. A possibility distribution 7 is a mapping from {2
to [0, 1]. It represents the plausibility of each state of the
world, the higher, the more plausible. 7(w) = 1 means that
the state is totally possible, 7(w) = 0 that it is impossible.

A belief base is built on a set of formulae, each associated
with a level of belief. We assume formulae belong to a set
F called the hypotheses class, e.g. propositional formulae
over a given language, or linear comparisons between nu-
merical values. For ¢ € F, we note [¢] C € the subset of
w that satisfies ¢. We associate a value o with ¢, taken in
an ordinal set. It represents the priority of its associated for-
mula, its credence, compared to the other formulae present
in the possibilistic base I'.
The degree of belief possess a clear semantics. It can be lin-
ked to imprecise probabilities as defined by [ ,
]. Given a formula ¢, consider the lottery
in which a gambler receives a unit gain if ¢ is satisfied and
zero otherwise. « is defined as the maximum purchase price
one would pay to enter this game. In particular, « is one iff

the gambler is certain of a positive outcome, otherwise she
would forfeit a sure gain or incur a sure loss.

The statement (¢, ) claims the worlds where ¢ is satisfied
are fully possible and the world where ¢ is not are partially
possible, at level 1 — a, as captured by Equation (1).

o) = {1 if w e [o;],

1—«; otherwise.

ey

When dealing with a conjunction of statements, we opt for
the minimal specificity criterion where the possibility level
is aggregated using the minimum operator. This allows to
define the possibility distribution induced by a belief base
I according to Equation (2).

o) = B o) () @
This definition extends the case where information is per-
fect : when levels are restricted to {0, 1}, a new statement
¢ prunes the set of possible world by asserting all worlds
that do not satisfy ¢ are completely impossible. Observe
that, when o; > ao, the statement (¢, ;) subsumes the
statement (¢, aa).

Example 1. We have a bag. Inside the bag there could
be nothing, a banana, an apple, or both. We have =
{ba, ba,ba,ba}. We receive the information that (a ® b)
with a certainty of 0.9. Hence, Tt = {(a @ b,0.9)}. In
other words, the necessity that there is exactly a fruit in the
bag is superior or equal to 0.9. T'* induces a new possibility
distribution for all states of the world, as shown in Table .

w 1
ba | 0.1
ba 1
ba 1
ba | 0.1

TABLE 1 — Possibility distribution induced by I'!

The states of the world not satisfying the formula in T be-
come less possible, as in Equation (). However, states of
the world satisfying the piece of information are still totally
possible. If we consider T? = {(a & b,0.9), (b,0.7)}, we
have the possibility distribution of Table 2.

w T2
ba | 0.1
ba | 0.3
ba 1

ba | 0.1

TABLE 2 — Possibility distribution induced by I'?

For ba not satisfying both formulas, we take the minimum
possibility value between 1 — 0.9 and 1 — 0.3, as shown in
Equation (2).

If an w does not satisfy ¢;, we give it a possibility value
equal to 1 — «;, as in Equation (1). Hence, if ¢; has a



strong credence, an w not satisfying it will be deemed less
possible. To compute the possibility distribution for I', we
simply take the minimum value returned by each pair, as
in Equation (2). Therefore, if an w belongs to all the [¢,],
its possibility value will be 1, it is totally possible. Howe-
ver, if such an w does not exist, we say that the base is
inconsistent. The level of inconsistency is evaluated as in
Equation (3).

Inc(l')=1-

ne(T) max 7r(w) 3)
If the base is consistent, Inc(T") is equal to 0. Otherwise,
it is at least of value 1 — «; where «; is the lowest value
among the pairs (¢, o).

The handling of uncertainty in possibility theory sees three
advantages. Firstly, it captures standard set theory, as a
possibility is coherent whenever its maximum reaches one
(therefore, multiple elements can have possibility one).
This contrasts with probabilities, where the summation
constraint means that making one element more plausible
decreases the plausibility of some others, making it unable
to capture set theory. Secondly, the coherence of the
final result is not considered an axiom. This differs, e.g.,
from standard probabilities or even from lower previ-
sions [ ]. Thirdly, the user does not require to
know how new numbers are computed, as the computations
are done with an ordinal setting and the min operator.

Finally, we introduce the notion of a-cuts. These are sub-
bases I's, and I'>, defined in Equation (4).

Tso ={(¢j,a;) €T sta; > a}

I>o ={(¢j,a;) €Tsta; > al @)

We simply do not consider pairs with an «; (strictly or not)
below the given threshold. This will prove useful when dea-
ling with inconsistent bases, and allows for a concise cha-
racterization of the inconsistency level :

Inc(T) = a <= T's,isconsistentbutnotI's,  (5)

Example 2 (Example 1 continued). We now have I'® =
{(a®b,0.9), (b,0.7), (@D, 0.6)}. Our analyst tells us that
the necessity that there are no fruits inside the bag is at
least 0.6. This makes the base inconsistent, and we have
the possibility distribution of Table 3.

w T3
ba | 0.1
ba | 0.3
ba | 0.4
ba | 0.1

TABLE 3 — Possibility distribution induced by I'®

This base is inconsistent. If we solely consider the base wi-
thout the degree of certainty, the analyst is affirming that

there are fruits and there are no fruits in the bag. It is totally
contradictory. Without degrees, to repair such an inconsis-
tency, one would have to choose between either the first two
pieces of information or the last. However, we have access
to additional information with the degrees of certainty. A
basic way to repair the belief base is to consider the formu-
lae on the degree of inconsistency, as defined in Equation
(3). As the most plausible world is ba with degree 0.4, we
have Inc(I'3) = 0.6. In other words, the strict 0.6-cut of
T, (I'®)<0.6, is consistent. It amounts to ignoring formulae
with level 0.6 or lower, which actually yields T'2.

With the basics of possibility theory clearly defined, we can
now focus on the possibilistic inference of a formula ¢ from
a possibility distribution induced by I', . When informa-
tion is certain (i.e., all as are one), inferring on such a base
is equivalent to robust (or skeptical) inference : checking
that all the totally possible states of the world satisfy the for-
mula we want to infer. The possibilistic inference semantics
extends this process to imperfect information, with level in
[0, 1] and beliefs that are not necessarily consistent.

Definition 1. ([ ], Possibilistic infe-
rence) . ':m' (gb,a) iff Vw,ﬂ'p(w) < W{(¢7a)}(w)

Example 3 (Example 1 continued). We consider T'2. It is
possible to infer a, i.e. the absence of an apple, from the
base. The two possibilities distribution are in Table 4.

w 2 T(a,)
ba | 0.1 | 1—«
ba | 03 | 1—a
ba 1 1
ba | 0.1 1

TABLE 4 — Possibility distribution induced by I'? and a

With o = 0.7, for all possible states of the world, the pos-
sibility of having a is greater than the possibility of T'2.
Hence, we can infer (a,0.7) from T'. In other words, from
the facts we believe it is 0.9-certain there is one fruit in the
bag and it is 0.7-certain there is a banana, we can deduce
it is 0.7-certain there is no apple.

Possibilistic inference is similar to what is done in other
kinds of logic. For example, Definition | can be rewritten
as a refutation. Instead of checking the inclusion of
all totally possible w in [¢], it is equivalent to verify
that the intersection between the totally possible w and
[-¢] is empty. However, when the base is inconsistent
(Inc(T") > 0), we can infer any formula at &« = 1 — Ine(T)
because the empty set is included in every set. At this
point, it is necessary to remember the difference between
inferring and deciding.

Inferring ¢ and —¢ on an inconsistent base without degrees
of certainty is problematic, as it does not come with tools
helping to solve the conundrum. By contrast, the higher-
order information provided by the valuation of beliefs with
degrees of certainty can help to address the problem, as the



decision has to be made between (¢, @) and (—¢, 8), a ri-
cher information. As decision is not the focus of this work,
we leave this question open. Two new types of inference
will be introduced, specially built to deal with the incon-
sistent case. We introduce the first semantics, the non-trivial
inference, in Definition 2.

Definition 2. ([ ], Non-trivial infe-
rence) I’ ):nt (¢> OZ) iff T rne(r) (w) < 7r{(<b,oz)}(w)

Equivalently, this can be written :

I = (¢, @) iff T o ds consistent and I's., =i (¢, @)

(6)
The semantics is based on the possibility degrees. We sim-
ply ignore the formulas under the inconsistency level. As
IS rne(r) is always consistent, inferring is safe. Here, in-
ference and decision are equivalent, as it is not possible to
infer ¢ and —¢ on a consistent base. However, the disad-
vantage of this semantics is the drowning effect : all infor-
mation below the inconsistency level is lost, even though
some of it might be consistent with the curated base. Hence,
the accepted inferences will be high in terms of certainty,
but less pieces of information will be inferred. For a speci-
fic discussion of this issue, refer to [ s
Section 3.2]. To avoid this, we introduce a last semantics to
tackle inconsistency, the safe possibilistic inference in De-
finition 3.

Definition 3. ([ ], Safe inference)
' ks (¢,)iffI0* C  Tstmax,mrs(w) =
1 and Yw, mr- (w) < Ty(p,a)} (W)

If a consistent subbase of I' supports the inference of
(¢, @), then this inference is deemed safe. In this case,
inferring and deciding are different. Two different coherent
subbases could allow to respectively infer ¢ and —¢. In
the literature, the quality of a subbase is measured by the
minimum degree of certainty of one of its formulas. If
we can infer ¢ and —¢, deciding ¢ would require the best
subbase for ¢ to have a strictly better rank than the best for
—¢. However, before turning to the decision mechanism, it
is necessary to construct syntaxes for our inference process.

Now that a very brief definition of possibility theory and
semantics for inference have been given, let us restrain our
Q so that we can give computational results and define a
syntax for our semantics given in Definitions 1, 2 and 3.

3 The logic of linear comparison

3.1 Restricting to linear inequalities

Our aim is to use the expressivity and good computational
properties of linear models while keeping the logical
tools for reasoning over a base. To our knowledge, very
few works in the field of possibility theory have covered
this point. [ ] proposes to use
possibility theory to address inconsistency in a MCDA
setup, but does not use possibilistic tools to perform the

inference.

From now on, we restrict ) to the Cartesian product of
domains defined over a continuous space. We have ) =
(R4)™ \ {0}. Therefore, each w € € is a non-null vec-
tor of n dimensions in R . Without loss of generality, we
consider that each belief base is composed of a number of
statements and the n necessary statements with w; > 0 with
credence 1. We also restrict our class of hypotheses F to the
dual space Q% so that each formula ¢() is associated to a
n-dimensional vector (qsgj), cee Y )) € R™ and to a linear
inequality of the form given in Equation (7).

> 6w >0 ™)
i=1
With F and 2 specified, it is possible to give computatio-
nal results for the various forms of possibilistic inference
semantics.

3.2 Computational results

According to Definition 1, inferring ¢ on a consistent possi-
bilistic base is made by checking that the set of totally pos-
sible worlds is included in [¢]. This is equivalent to proving
that no totally possible w is in 2\ [¢].

When (2 is a set of propositional variables and F the propo-
sitional formulae over them, checking whether a possibilis-
tic base is consistent or not is DP-complete, and inference is
computationally difficult [ 1. With Q = R™\ {0}
and F = QX this check can be performed in polynomial
time with linear programming, yielding low complexity re-
sults for the various inference problems.

Proposition 1. When Q@ = R," \ {0} and F = Q% che-
cking whether a given possibilistic belief base is consistent
is polytime.

Proof. Consider the linear program with decision variables
in € consisting in maximizing ¢~ := Y"7" | w; subject to
all formulae in the base and the fundamental constraints
w; > 0. This linear program is always feasible (because the
null vector satisfies all constraints), can be solved in poly-
nomial time [ s ], and the
deduction is valid iff the optimum is strictly positive. [

As a corollary, finding the inconsistency level of a belief
base is polytime.

Corollary 1. When Q@ =R, "™\ {0} and F = Q% given a
possibilistic belief base I', computing Inc(T") is polytime.

Proof. Finding the inconsistency level can be performed
with a binary search on «, by checking whether I'>,, is
consistent or not, as proposed in [ ]. It requires
O(log, |T'|) calls to a polynomial algorithm, hence it is still
polytime.

O

For our three semantics of interest, inference over a
consistent belief base is polytime.



Corollary 2. When 2 = R;" \ {0} and F = Q% given
a possibilistic belief base I', a formula ¢ and a level o €
[0,1], if I'>, is consistent, then deciding whether I' =x
(¢, @) is polytime whatever X € {pi, nt, s}.

Proof. For all three semantics, inferring (¢, /) amounts to
checking whether I'>., U (—¢, ) is inconsistent. For =,
it is direct via Corollary 1. As the base is consistent, it
is also the case for =,; and = because all subbases are
consistent. O

Corollary 3. When Q = R." \ {0} and F = Q% given
a possibilistic belief base I', a formula ¢ and a level o €
[0, 1], deciding whether T" |=,,; (¢, @) is polytime.

Proof 1. Consistent case in Corollary 2. For the incon-
sistent case, computing Inc(T') is polytime. As I's rc(r) is
always consistent, inferring with =, on an inconsistent
base is polytime.

When considering safe possibilistic inference, the require-
ment to find a consistent subbase makes the problem more
computationally demanding. Fortunately, Proposition 2 en-
sures that it remains in NP.

Proposition 2. When = R" \ {0} and F = Q% given
a possibilistic belief base I', a formula ¢ and a level o €
[0,1], deciding whether I" |=, (¢, &) is NP-complete.

Proof. Membership : given a subset I'* of the belief base,
checking whether I'* is consistent is polytime. If it is, then
checking whether I'* |=,,; (4, @) is polytime.

Hardness : reduction from VERTEX COVER [ ].
From an instance (V,E,K) of VERTEX COVER, we
build an instance (I', (¢, «)) of SAFE POSSIBILISTIC
INFERENCE as follows. The parameter set is 2 :=
(Ry)PVVUHeBY For each edge e and vertex u € e, we
denote ¢¢ the formula we + wy < wy, and I' the possi-
bilistic belief base containing all these formulae with cre-
dence 1. Let ¢ the formula Zvev wy + wg < Kw,y, and
¢: Y epwetws < Kwo. Weclaim T, (¢%,1) = (¢,1)
iff there is a vertex cover of (V| F) of cardinality < K.
Indeed, suppose U C V covers E with |U|] < K, and
consider the sub-base I'y; containing all formulae ¢} for
e € Fand u € e N U, with credence 1. First, the sub-
base T'yy U {(¢*, 1)} is consistent, because the interpreta-
tion where w, = 0 for all edges in F, w, = w, for all
vertices in U, w,, = 0 for all vertices in V' \ U and wg = 0
satisfies all its formulae. Second, it allows to deduce ¢ with
credence 1, because, for every interpretation of w € (2 sa-
tisfying both I';; and ¢#, we have, by summation of all
comparisons in I'yy that > pwe < >0 cpp(wu — wa) =
Y wer Wu — |Ulwa. Moreover Y7y wy <30 oy Wy be-
cause all w,, are non-negative and U C V. Thus, ¢># yields
YecpWe Fwp <D oy Wy +wp < Kw, and ¢ holds in
every possible world.

Reciprocally, suppose there is a sub-base I'* C I' U
{(¢##,1)} which is consistent and allows to derive ¢. Sup-
pose ¢ ¢ T'* : there is no constraint bounding ws from
above, and starting from any feasible model and letting

wg — 400 yields a feasible model that does not satisfy
¢ at some point : a contradiction. For each edge e € E, if
I'* contained no formula ¢¢ for some u. € e, there would
be no constraint bounding w. from above, leading to a si-
milar contradiction. Thus, the set U := (J  p{uc} covers
F, and because (b# holds, it cannot have cardinality above
K. O

At this point, we have not given any general results concer-
ning the baseline semantics of possibilistic inference. Ob-
serve this semantics still holds if the base is inconsistent, al-
lowing to infer any formula (and also its negation) at some
level o > 0. Computationally, this is a much more difficult
problem.

Proposition 3. When Q@ =R," \ {0} and F = Q% given
a possibilistic belief base I', a formula ¢ and a level o €
[0,1], deciding whether I" =,; (¢, ) is NP-hard.

Sketch of proof. Adaptation of the reduction from VER-
TEX COVER put forward in the proof of Proposition 2.
Let e* = {u*,v*} an arbitrary edge in E, and consider
a slightly modified belief base I/, where the formulae qﬁf:
and ¢?. now have a slightly lower credence 0.9 instead of
1. The formula ¢ can be inferred with |=,; at level 0.9 iff
there is a vertex cover, and at level 1 iff there is a vertex
cover without e*. O

The question of membership in NP is left open.

3.3 Certified inference

The last section proposed a calculus for possibilistic logic
based on linear programming. This is a satisfying solution
from the computational point of view, allowing tractable in-
ference, even though NP-completeness is hardly scalable, it
is sufficient to process small instances. Nevertheless, linear
programming is certainly not human-friendly, and relying
on a solver to check the validity of inference does not seem
to fulfil the requirement of transparency for trustworthy Al
Thus, we propose to support inference with evidence allo-
wing to check its adequacy. The main tool in this endeavour
is Farkas’lemma : a system of linear inequalities over R"
¢t > 0,...,0™ > 0 entails ¢ > 0 if, and only if, ¢ is a
convex combination of the ¢k . Thus, deduction made un-
der the assumptions of Corollary 2 can be supported with a
certificate proving its soundness.

Reasoning w.r.t. safe inference. We propose a certificate
for safe inference.

Definition 4. When 2 = R™ \ {0}, a primal/dual (or p/d)-
certificate is an ordered pair (w*, A\*) where w* € € and
A* is a tuple of non-negative numbers. Given a possibilistic
belief base T' = {(¢"), ay), ..., (¢, a,,)}, a formula ¢

and a level o € [0, 1], we write T - *") (¢, &) when all
following conditions are satisfied :

i) the length of A* is equal to m, the cardinality of I';
i) forall 1 <k < m,if A} > 0then ¢(®)(w*) > 0;
iii) forall1 <k < m,if A}, > 0 then o, > «; and



iv) ¢ > 3 A
We write I' 5 (¢, ) when there is a p/d-certificate
(w*, A*) such that T F ) (¢, ).

Proposition 4. Syntactic deduction I is sound and com-
plete w.r.t. .

Proof. Define T* := {(¢(*), a}) : \f > 0}. Condition ii)
ensures the consistency of I'*, as witnessed by the totally
possible w*. Condition iii) ensures the credence level of I'*
is at least o, warranting inference at this level. Condition
iv) ensures the conclusion ¢ is in the convex span of the
formulae in I'*. All these conditions are necessary for safe
possibilistic inference, and together they are sufficient. [J

Reasoning w.r.t. non-trivial inference. There are two
ways to perform non-trivial inference :

— either to compute the inconsistency level Inc(T") be-
forehand ; maybe certify it with a primal/dual certifi-
cate (w*,\*) such that 3", \*¢F = — >, wy (thus
IS rne(r) is consistent) and for all 1 < k < m, if
ay > Inc(T) then ¢ (w*) > 0, and if oy, < Ine(T)
then Ay, = 0 (thus I'> ,,¢(r) is inconsistent) ; then per-
form inference with the consistent base (maybe sup-
porting it with a dual certificate).

— or to perform safe inference restricted to a stratified
consistent subbase I'* C I's, 7,¢(1)-

Definition 5. Under the same assumption as Definition 4,
we write I' % "*") (¢, o) when conditions i), i), iii) and
1v) are satisfied, as well as :

v) forall 1 < k < m, if o > a > Inc(l') then
»F) (w*) > 0.

We write I' F,; (¢,a) when there is a p/d-certificate
(w*, A*) such that T ") (¢, ).

Proposition 5. Syntactic deduction t-,,; is sound and com-
plete w.r.t. =y

Proof. This is corollary of the fact non-trivial inference is
simply safe inference restricted to the case where the sub-
base I'* C I's, 1,y Condition v) enforces this. O]

As a direct consequence from Propositions 4 and 5, -, and
-+ are not harder than their respective semantics, allowing
NP-complete and polynomial-time inference.

Reasoning with possibilistic inference . Defining a
concise certificate for possibilistic inference remains an
open question, conjectured to be equivalent to asserting
whether deciding =,; belongs to NP.

3.4 Argued consequence and syntaxes

=, originates from [ ]. In the paper, a
syntax for safe inference is defined. It differs from Defi-
nition 4 as it was not specifically built for linear numeri-
cal bases. However, even though the syntaxes are different,
their properties are similar.

The generic definition of an argued consequence is given in
Definition 6. A subbase I'* is an argued consequence for a

formula ¢ if it respects the following properties. We note
Fac this syntax.

Definition 6. ([
1. Inc(T*) =0,
quence) < 2. I, ¢ (relevance),
3. Vo, e, I'* —{¢;} ¥ ¢ (economy),

], Argued conse-

The relevance and consistency properties are also contained
in F,, as in Definition 4. Relevance as Farkas’ criterion of
infeasibility (through the decomposition), and consistency
as a consistent subbase is searched. However, the minima-
lity property is implicit in |-5,. We have no guarantee that
our certificate will be minimal. Therefore, it is not possible
to enounce that the two syntaxes are exactly equivalent,
but they share two strong properties, the relevance and the
consistency of the certificate.

Hence, we have defined three different semantics and syn-
taxes. One general for the consistent case and two allowing
to make non-trivial and safe decision from an inconsistent
base. They all have interesting computational results and
were linked with Farkas’ Lemma, in order to be able to pro-
vide a certificate to our user. This point will be developed
in the next section, accompanied by illustrations of notions
that have been defined in the two last sections. It will be
presented through the MCDA example.

4 A possible application : MCDA
4.1 MCDA in a nutshell

In Multi-Criteria Decision Aiding, our aim is to aid our
user (DM) to choose between several alternatives evaluated
on several criteria. For example, she might have to choose
a hotel in Dijon and her criteria are the price, the num-
ber of stars, the distance to the conference center, and the
presence/absence of breakfast. We want to learn her pre-
ferences. A DM might prefer a cheap hotel while another
DM might want an expensive one close to the commute.
The common way to model preferences is to consider a
weight vector w defined over n continuous finite domains,
n being the number of criteria. Numerous different mo-
dels exist, from the weighted sum, to Choquet’s integral
and the OWA/WOWA. For an extensive review, refer to
[ ]. To conduct the elicitation process, we
ask her questions in the form of linear inequalities.

Example 4. Let us take an example where we have to help
the DM choose between several alternatives, each descri-
bed by three criteria. For each criterion, the higher the
score the better. The alternatives are presented in Table 5.
For illustration purpose, it will be considered that the DM’s
preferences can be modelled through a weighted sum, one
of the simplest numerical models. It is parameterized by a
vector w € Q = (R )3, It represents the preferences of the
DM as follows : given two alternatives x, vy, x is preferred
to y, denoted x =, y iff



Alternative  Criterion 1 Criterion 2 Criterion 3

a 10 2 6
b 8 3 7
c 6 6 4
d 4 9 5

TABLE 5 — Alternatives comparison

3 3
Z Tiw; > Z Yiws (3
i=1 i1

Given some preference information under the form of a
consistent belief base T, it is customary to write x =1 vy if
Equation (8) holds for all w compatible with all beliefs. We
shall keep this notation, but we assume each comparative
statement of I' comes with an assessment of its credence,
and in turn we provide an indication of credence for infer-
red beliefs.

The DM states she prefers c to a, a belief represented by
6w1 + 6ws + 4wz > 10w1 + 2ws + 6ws or, more succinctly,
the formula —4wy + 4wy — 2ws > 0 € Q%. Besides com-
parative statements, more general beliefs can be expressed
with linear comparisons. For instance, given criteria are
expressed on the same scale, “criterion 2 is more impor-
tant than criterion 1” is represented by wo > wy.

We perform an active and incremental eli-
citation  process.  Examples  from  the lite-
rature can be found in [ s

]. Our aim is to fit the prefe-
rences of the DM by restricting the parameters of our
numerical model. When the space of totally possible w is
small enough, we are able to infer on the base by using the
syntaxes we defined in the last section.

4.2 MCDA and logic of linear comparison

One can see that the MCDA framework we just defined
is very close to our logic of linear inequalities. However,
several points need to be clarified.

Firstly, very few works in the field of MCDA have
tried to associate a credence degree with each piece
of information we use to infer. This idea is evoked at
the end of [ ] but, to our knowledge,
the only paper that has tried to develop this idea is
[ ]. This is due to a central
question around this work ; is it relevant to ask our DM for
o; 7 This question has already been addressed in Section
2. In the MCDA setup, it is also a maximum purchase
price for a ticket for an uncertain lottery. The limitation
of current robust elicitation frameworks, as defined in
[ ], is that they assume certain knowledge.
We believe that this representation is too naive. This is
why we advocate that a rational agent would rather choose
a maximum purchase price below the winning prize.

We extend the robust approach by allowing the agent to
express her doubts on the information she gives us, instead
of blindly believing all that she says.

The rest of this section will consist of an example using the
tools we have defined in the 2 last sections.

4.3 An example to illustrate the developed
tools

We continue Example 4. Figure | represents 2.

w1

(095 ws

FIGURE 1 — Barycentric representation of the set of worlds
Q.

In this representation, I® = {(w; > 0,1),(wy >
0,1), (w3 > 0,1)}. For a reminder, these are the necessary
statements on each w;. She gives us a preference :

(d)(l) = wy > wo,aq :=0.9)

In other words, she thinks that criterion 1 is more impor-
tant than criterion 2 with a certainty of 0.9. We have I'! =
{(w1 > 0, ].), (CUQ > 0, 1), ((JJ3 > 07 1), (wl > w2, 09)}
According to our interpretation of such a pair and Equation
(1), Figure 2 represents the updated space of parameters.

w1

\\\@/(1)

w2

FIGURE 2 — The possibility distribution 7p1.

The upper half-space ([¢(1)]) is constituted of all the w
such that wy > wy, therefore with a 7r(w) = 1. The lo-
wer one is constituted of all the w not satisfying ¢(*), hence
with a possibility of 1 — 0.9. She adds a second statement.

(¢<2) = w3 > wi,an = 0.8)

2. Without loss of generality, a normalization constraint (w1 + w2 +
ws = 1) is added to permit the use of barycentric coordinates for an easier
representation



Hence, T? = {(w; > 0,1),(wz > 0,1), (w3 >
0,1), (w1 > w2,0.9), (wg > w1, 0.8)}, we obtain the pos-
sibility distribution over €2 shown in Figure 3. Due to the
minimum in Equation (2), for the left part of the triangle
(i.e. w not satisfying any of the two constraints), we take
the minimum value of possibility.

FIGURE 3 — The possibility distribution 7.

I'? is consistent, as witnessed e.g. by the primal certificate
w = (%, %,3%). To verify whether a =2 d can be inferred,
¢ := (6w; — Twa + w3 > 0) must hold for all totally
possible w. First, the proof by refutation is drawn in Figure
4. The half-space corresponding to the negation of ¢%~¢,

with a certainty of 1, is added to I'2.

FIGURE 4 — The possibility distribution induced by I'? U
(ﬁ¢a>—d’ 1)’

The distribution in Figure 4 is inconsistent as no w belongs
to all half-spaces. This semantically proves that our DM
prefers alternative a over alternative d, with a certainty of
0.8, because the maximum of 72 over the worlds where
d > a is 0.2. We establish this preference syntactically by
providing a dual certificate. The inequality system is pre-
sented in Equation (9).

w1 >0 (dM1,1)

we >0 (d@,1)
I?=<Sw;>0 (d® 1) )

wi—ws >0 (¢M,0.9)

ws—w; >0 (¢3,0.8)

Observe ¢ = 7¢(M) + ¢, which allows to deduce ¢4
from I'? with certainty min; s, 200 = 0.8.
Let us add a new ¢(3) to our base that breaks consistency.

() = ¢ =y, byaz :==0.7)
with ¢ & —2w; + 3wy — 3w > 0
We now consider I's := 'y U {(¢®,0.7}.

The possibility distribution induced by I'® is displayed on
Figure 5.

FIGURE 5 — The possibility distribution 7rps.

I'® is inconsistent, no w # 0 is a solution of its system.
Observe that the convex combination 7¢p(!) 4 4¢(2) 4+ 2¢(3)
ensures —w; — wy — 2ws > 0, while the non-negativity
of w1, ws,ws entails wy + we + 2ws > 0. Both cannot be
satisfied if w is non null. We illustrate how inference based
on different semantics produces different outcomes.
Possibilistic inference =, allows to infer any formula
¢ from I's, but with a level « = 1 — max-47mps €
{0.1,0.2,0.3}. This is a much more nuanced version of the
principle of explosion of classical logic which puts all for-
mulae on the same level.

Non-trivial inference |=,, prescribes to ignore the less cer-
tain stratum at level 0.7 which provokes inconsistency.
Thus, from this viewpoint, I is equivalent to its safe strata
I'2. Observe that, if beliefs compatible with I'2, but no more
certain than 0.7 were present in the base, they would have
been “drowned”.

Unsafe inference could be performed by leveraging dual
certificates but ignoring the requirement of a primal cer-
tificate ensuring local consistency. Indeed, define ¢ :=
(a v d) & (6w; — Tws + wz > 0) and observe
¢ = 1000 + 203 + ¢ 4 23, allowing to unsafely
derive ¢ at level a = 0.7. However, the basis of this certi-
ficate is I'* = I'® and is inconsistent, undercutting the ar-



gument supporting ¢ : in every world where ¢(!), (1) and
¢(3) hold, ¢ holds, but there is none.

Safe inference allows to make deductions based on any
(maximally) consistent subbase of I'3 : either I'2 by igno-
ring #®), or the bases obtained by ignoring respectively
#(1) or ¢(2). This is much more versatile than non-trivial
inference, at the cost of solving a NP-complete problem.
In this section, the logic of linear comparison has been illus-
trated through MCDA. We applied our syntaxes to infer on
a belief base in the context of the MCDA problem. Ho-
wever, other problems solved by numerical models could
also be used within this framework, such as scheduling.
This idea is not recent, such as | ] gave an
overview on how possibility theory can be applied to sche-
duling. This is left for further research, such as the decision
procedure.

5 Related works

5.1 Possibility theory

Quantitative  Possibility =~ Theory, as defined in
[ ], is different from what we
want to achieve in this work. QPT defines the semantics of
another possibility theory, where « is not defined over an
ordinal set but over a continuous domain, as in probability
theory.

To our knowledge, the only example of work combining
possibility theory and numerical preferences (except
[ D, is [ I
The fundamental difference between our approaches is
that, instead of considering the priority as a degree of
certainty, they choose to consider it as a degree of intensity.

Computational results have not been the main focus in pos-
sibilistic logic, except for [ ] and papers on com-
binatorial logic. In this paper, results have been given on
numerical linear logic, results absent from the literature.

5.2 Numerical models

The proposed extension in [ ] extends the
robust approach. In some papers as [ ], the
hypothesis is that the DM never commits any mistake. Even
if we drop this hypothesis, no other work has tried to asso-
ciate a degree of certainty to each piece of information.

6 Conclusion

In this paper, a theoretical framework combining logical
frameworks and numerical models has been presented. Our
main objective is to benefit from their respective qualities.
Numerical models, in our case linear inequalities, are
interesting from a computational point of view. A logical
framework provides clear semantics and tools to infer,
even in case of inconsistency. We chose to use Possibility
Theory, as it is a formalism to represent uncertainty that
comes with several good properties, as the conservation of
the bounds value during the elicitation process thanks to
the minimum specificity principle and its non-necessity to

normalize the distribution of possibility at every step.

Semantics and syntaxes for inferring over a base built out
of formulas and their associated degree of certainty have
been defined : a polytime semantics and syntax to infer
on a consistent base, another polytime couple to infer on
an inconsistent base but with the downside that several
pieces of information are not considered, and a last one to
infer on an inconsistent base, which is at least NP-hard.
All of these syntaxes have been linked to Farkas’ criterion
of contradiction, as used in the explanation literature. We
believe that an analyst would be more confident in the
decision returned by the elicitation if each of them was
associated with a degree of certainty. Furthermore, Farkas’
provides a certificate of infeasibility, which can be seen as
an early form of explanation.

We finally gave a possible application to our logic of linear
combination, in the world of MCDA. It was necessary
to give a justification for the existence of the degree of
uncertainty associated with each formula. We believe that
they can be seen as a maximum purchase price in a game
when the agent wins if the information she gives is proved
to be correct. Other examples could have been investigated,
such as fuzzy scheduling.

Future works include searching for new syntaxes to in-
fer despite the inconsistency. Another peculiar point of
interest is the decision process in case of inconsistency.
It may be linkable to bipolar argumentation, as defined
in [ , ]. Finally, explo-
ring the explanation process for a recommendation coming
from a belief base is an important subject.
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