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Résumé
Les politiques pour des processus de décision markoviens
partiellement observables sont des objets riches,
prescrivant des actions en fonction de l’historique entier
des observations et actions. Avec l’interpretabilité comme
objectif, nous proposons de redécrire des représentations
peu interprétables comme des fonctions définies sur
les valeurs de descripteurs de l’état de croyance
courant, construits de manière systématique à partir
de descripteurs de l’état. Ces fonctions peuvent à leur
tour être représentées par des objets intelligibles, comme
des matrices de poids ou des arbres de décision. Nous
étudions les problèmes de calcul afférents, et comparons
empiriquement notre approche avec une redescription des
politiques par des contrôleurs à états finis.
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Abstract
Policies for partially observable Markov decision processes
are rich objects, prescribing actions to take depending
on the whole history of observations and actions.
Towards interpretability, we propose to redescribe poorly
interpretable representations as mappings defined on the
value of features of the current belief state, built in a
systematic manner from state features. Those mappings
can in turn be represented by intelligible objects, like
matrices of weights or decision trees. We investigate related
computational problems and experimentally compare our
approach with redescription of policies as finite-state
controllers.
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1 Introduction
We are interested in the representation of policies of
actions for partially observable Markov decision processes
(POMDPs), which are stochastic decision processes with
partially observable states. At execution time, a policy

prescribes actions to take depending on the whole history of
actions and observations. Standard representations of such
policies are by finite-state controllers (with states/nodes
associated to actions and transitions via observations), and
by sets of α-vectors, which are hyperplanes in the belief
space, that is, the space of probability distributions over the
state space (which represent possible beliefs of the agent
over the current state).
Arguably, such representations lack interpretability: states
in finite-state controllers are simply atoms, and α-vectors
are high-dimensional vectors of real values. Hence we
propose a new representation of policies for POMDPs, in
which a set of epistemic features is built in a systematic
manner from a given set of state features, and policies
are represented by interpretable objects (e.g., matrices of
weights, decision trees) defined on the embedding of the
belief space onto these features.
In a nutshell, an epistemic feature is a propositional formula
over the state features (a small disjunction or conjunction),
and its value in a belief state is the probability that it
is satisfied by a state drawn from it. This allows us to
propose representations of policies over features like “the
probability that the goal is at (0, 0)” which, we think, makes
them more interpretable.
We define these representations and algorithms for
computing them. Our approach is post-hoc, that is,
starts from a (non-interpretable) policy and redescribes it
into a more interpretable one. We finally compare our
representations to those based on finite-state controllers in
terms of size and computational time.

2 Related Work
Solving POMDPs exactly is intractable in general except
for the smallest problems, due to the rapid growth
in complexity. Point-based algorithms have been a
breakthrough for scaling and solving POMDPs, by avoiding
the curse of dimensionality and the curse of history. Point-
Based Value Iteration (PBVI) [31] samples a small set of
representative belief points and locally updates a lower
bound of the optimal value function represented by α-
vectors, which ensures that it is piece-wise linear and



convex. Heuristic Search Value Iteration (HSVI) [35, 36]
draws on the same idea but, contrary to PBVI, it also
maintains an upper bound on the optimal value function,
and samples beliefs by generating trajectories while acting
optimistically. One of the most efficient point-based
algorithms is SARSOP [21]. It builds on HSVI, but tries
to approximate the reachable belief states under an optimal
policy. It also benefits from a pruning strategy based on the
α-vector representation of the value function.
Another line of work leverages recurrent neural networks
for their ability to encode the history [2]. They are often
integrated in another architecture to make predictions, such
as Deep Q-Networks [29]. Carefully designed and tuned,
they can be a strong baseline for many POMDPs [30].
Recently, transformers have also been considered instead of
recurrent networks, with mixed results [24]. A somewhat
compact representation of a policy can be obtained by
embedding it into an RKHS and truncating the embedding
basis up to a certain number [25]. This results in a more
compact but approximated policy.

2.1 Interpretability
There is a growing interest and a surge of work in
explainable and interpretable machine learning [11]. This
is motivated by ethical and legal concerns [7], and the need
to understand algorithmic predictions to ensure decisions
based on machine learning systems are safe and reliable
[23]. In this work, we focus on interpretability, which
refers to the degree to which a human can understand the
model’s results and the causes of its decisions. It often
implies that a user can grasp how inputs are processed
and mapped to the outputs in a human-comprehensible
format [10]. Closely related notions often involve deriving
agent behaviors that are more easily interpretable by
external observers. For instance, behaviors may be
considered legible if they facilitate guessing the agent’s true
objective, explainable if the agent’s actions clearly align
with some objective, or predictable if future actions can be
easily anticipated [5]. Observer-aware MDPs (OAMDPs)
provide a formal framework to address these interpretability
challenges within stochastic environments [28].
Interpretability usually takes two roads [8]. Interpretability
by design means that the models learnt or computed
are taken from a language deemed interpretable per se.
In planning, examples are representations by easy-to-
understand trees [19, 37] or expressed with symbolic
features [17, 12], sometimes both [6, 20]. In [17], a
continuous state-action space is discretized, and the policy
is represented with if-else fuzzy rules.
Now post-hoc interpretability, which is the setting of
our work, means a model is redescribed, after learning
or computation, into an interpretable language. In the
setting of MDPs and RL, examples build on measuring
the importance of reachable states [18, 9] or actions taken
under the given policy. For instance, in [34], the importance
of actions is assessed regarding their role in satisfying a
predicate of interest at each time-step until the end of the
episode, starting at a given horizon k. Another approach

consists in targeting a simpler language [3].
In the POMDP setting, one can use symbolic features based
on a logical language. For example, Meli et al. [26] use
logical features to describe interesting traces of a given
policy, then use these descriptions as heuristics for other
solvers. Hence, though they are many similarities with
our work, the focus there is on computing interpretable
heuristics. In addition, in their experiments, they use
features which require more than the transition model to
be known.

2.2 Compression of Policies
Policies computed by search, as with SARSOP, are in
practice represented by high-dimensional vectors with
many nonzero coefficients. For this reason, symbolic
solvers, which use a factored representation of α-vectors,
like Symbolic Perseus [32], have been developed. Another
representation of policies is by a tree branching on
observations and prescribing an action at each node, and
the natural generalization of this to an automaton, namely,
a finite-state controller (FSC). In [13], the authors propose
algorithms for computing such compact representations by
FSCs, of policies given by oracles. Their focus is on
(post-hoc) compression of policies, which can be seen as
a manner of enhancing interpretability. We experimentally
compare our approach with theirs in Section 6.

3 Background
Given a finite set S, we write P(S) for the set of all subsets
of S, and ∆(S) for the probability simplex over S. Given a
distribution δ, we write x∼δ to denote the fact that random
variable x is sampled from δ, and x ∈ δ to mean that value
x is in the support of δ.
A Partially Observable Markov Decision Process
(POMDP) is a tuple ⟨S,A,O, T, Z,R, b0, γ⟩, where
S, A, O finite spaces of states, actions, and observations,
resp.; for all s ∈ S, a ∈ A, Ts,a ∈ ∆(S) is the
distribution of next states when a is taken in s; for all
s ∈ S, a ∈ A, s′ ∈ Ts,a, Zs,a,s′ ∈ ∆(O) is the distribution
of observations upon transition ⟨s, a, s′⟩ and Rs,a,s′ ∈ R
the reward received for transition ⟨s, a, s′⟩; b0 ∈ ∆(S) is
an initial belief state; and γ ∈ [0, 1) a discount factor.
Given a POMDP, a history is a finite sequence of actions
and observations of the form h := a0o0 . . . akok; we write
⟨⟩ for the empty history, and H for the set of all histories. A
belief state is a probability distribution over S, and we write
B for the set of all belief states (B := ∆(S)). A history h
induces a belief state bs(h) through Bayesian update:

bs(⟨⟩) := b0,

bs(h · ao) := s′ 7→ η
∑
s∈S

Zs,a,s′(o)Ts,a(s
′) bs(h)(s),

where η is a normalizing constant. A non-deterministic
policy pol : H 7→ A maps histories to actions. A non-
deterministic belief-based policy p : B → P(A) maps
a set B ⊆ B to sets of actions, and induces a policy



pol(p) : H → P(A) via pol(p)(h) := p(bs(h)), with
bs(h) := b being the belief-state induced by h.
The optimal value at history h and infinite horizon
is denoted by V∗(h) and defined by V∗(h) :=
maxa∈A Q∗(h, a), with

Q∗(h, a) := E
s∼bs(h)
s′∼Ts,a

(Rs,a,s′ + γ E
o∼Zs,a,s′

V∗(h · ao)).

We call optimal nondeterministic policy of the POMDP, the
function pol∗ : H → P(A) defined for all histories h by
pol∗(h) := argmaxa∈A Q∗(h, a). This function maps any
history to the set of all optimal actions to take at this history
and the initial belief state, given an infinite horizon.
It is well-known that a POMDP can be cast into a fully
observed MDP, called the belief MDP, whose abstract
states correspond to the above belief states. The transition
function between belief states is derived using Bayesian
update as above. The belief state is a sufficient statistic for
optimal decision-making, so that solving the belief MDP at
infinite horizon provides a policy p∗ : ∆(S) → P(A) that
is optimal for the POMDP at an infinite horizon.

Example 1. As a running example, we use a POMDP
containing 4 states, written s00, s01, s10, s11 (read intuitively
as sxy). There are three actions: check= does not change
the state but (deterministically) produces observation true
(resp. false) when taken in state sxy with x = y (resp.
x ̸= y); switchx deterministically maps each sxy to s(1−x)y ,
yielding observation void; noop does not change the state
and yields observation void. Finally, b0 is the uniform
distribution bunif over S, and R·,·,s′ is 1 for s′ ∈ {s00, s11},
0 otherwise.
Then h= := ⟨check=, false, switchx, void⟩ is a history,
inducing the belief state b= := bs(h=), which assigns
probability 1

2 to s00, s11. Let moreover b ̸= be the belief
state assigning 1

2 to s01, s10, and p be defined by p(bunif) :=
{check=, noop}, p(b ̸=) := {switchx}, and p(b=) =
{check=, noop}.1 Then p is a (non optimal) belief-based
policy, inducing, for example, pol(p)(h=) := p(b=) =
{check=, noop}.
It is easy to see that the optimal policy is given by
p∗(bunif) := {check=}, p∗(b̸=) := {switchx}, and
p∗(b=) = {check=, noop}

Policies can be naturally represented as trees, a node being
a history or a belief state, branching at each time-step
on actions that can be taken at this node and subsequent
possible observations. The problem of this representation
is that it grows exponentially with the horizon.
Manipulating graphs rather than trees yields finite state
controllers (FSCs) [27, 14, 13]. A non-deterministic FSC
consists of a set of nodes N among which a set N0 of
distinguished initial nodes, an action mapping act : N →
A assigning an action to each node, and a partial transition
function δ : N ×O → P(N).2

1The definition over other belief states is irrelevant to our examples.
2The transition function is partial because not all observations may be

received at each node during execution.

Intuitively, an FSC defines a nondeterministic policy pol as
follows. The set of nodes reachable by the FSC through
a history is defined by N(⟨⟩) := N0 and N(h · ao) :=⋃

n∈N(h),act(n)=a δ(a, o). Now for any history h, pol(h)
is defined to be

⋃
n∈N(h) act(n). In words, executing the

FSC means taking any action associated with one of the
current nodes, and progressing via a and o means restricting
to those current nodes where a could indeed be taken, then
transiting to their successors via o.
An ϵ-optimal (infinite-horizon) belief-based policy can also
be obtained by approximating the optimal value function
for a long horizon t. Such approximation is typically
expressed as a set of sets Γa of α-vectors, one set per
action a, with V{Γa}(b) := maxa∈A,α∈Γa b · α for all
belief states b; the function V{Γa} has the nice property
of being piecewise linear and convex. The induced
nondeterministic policy is defined on belief states, by
p(b) := argmaxa∈A(maxα∈Γa

b · α). However, as the
dimension of the vectors grows linearly with the number
of states and as the sets of alpha vectors Γa can become
very large to represent the policy up to the desired precision,
in practice this representation is neither more compact nor
more readable than tree policies.
Optimal value functions (and policies) can also be obtained
by relying on factored POMDPs [15], where the state and
observation spaces are modeled using multiple random
variables, and the transition and observation functions are
modeled as 2-layer dynamic Bayesian networks. These
functions, as well as the reward function, are often
expressed as algebraic decision diagrams (ADDs) [1, 16,
32]. Dedicated operators allow computing the optimal
value function also as an ADD, as in Symbolic Perseus [32],
and typically lead to compact representations. We however
leave this aspect for future work.

4 Epistemic Representations
Our proposal is based on the idea of describing policies
over what we call epistemic features, which are features
defined on the belief space. Formally, given a POMDP,
we define an epistemic feature to be a function φ : B →
R. Epistemic features may take many different forms, for
instance, entropy, but we choose to focus on epistemic
features built in a systematic manner from a set of state
features, that is, Boolean features of the form f : S → B.3

The reason is that such state features are typically readily
available (from a factored representation of the POMDP,
for instance) or easily defined by an expert.

Example 2 (continued). The state space of our running
example can be described with two state features, x and y,
with x(sxy) := x and y(sxy) := y; for instance, x(s00) =
x(s01) = 0.

To define epistemic features from state features, we use
simple logical combinations. A (propositional) clause over
variables F is a disjunction c of the form (f1 ∨ · · · ∨ fp ∨
¬fp+1 ∨ · · · ∨ ¬fw), where all fi’s are elements of F , all

3By B we mean {0, 1}, with 0 standing for “false” and 1 for “true”.



different from each other; dually, a term is a conjunction t
of the form (f1∧· · ·∧fp∧¬fp+1∧· · ·∧¬fw). We call w the
width of the clause or term. A clause or term of the above
form is said to be positive if p = w holds, that is, no negated
literal occurs in it. Given that ∨ and ∧ are commutative and
idempotent, we consider (f ∨f ′) and (f ′∨f), for instance,
to be the same clause (and similarly for terms).

Definition 1 (epistemic features of width w). Let F ⊆ BS

be a set of Boolean state features, and let w be a positive
integer. An epistemic clause of width w over F is an atom
κ of the form B c, where c is a clause of width w over F ,
and an epistemic term of width w is an atom τ of the form
B t, with t a term of width w over F . An epistemic feature
(of width w) is an epistemic clause or term (of width w).4

If c (resp. t) is positive, then B c (resp. B t) is said to
be positive as well. The set of all epistemic clauses (resp.
terms, positive clauses, positive terms) of width w over F
is written Φ∨,w

F (resp. Φ∧,w
F , Φ∨,+,w

F , Φ∧,+,w
F ).

Given a set F of state features over a state space S, a state
s ∈ S induces an assignment sF to the features in F : ∀f ∈
F : sF (f) = f(s). Given a propositional formula g over
F , we define sat(s, g) to be 1 (resp. 0) if sF satisfies g
under the standard semantics of propostional logic.

Definition 2 (semantics of epistemic features). The
function induced by an epistemic clause κ := B c (resp.
term τ := B t) is defined for all belief states b by κ(b) :=

Es∼b sat(s, c) (resp. τ(b) := Es∼b sat(s, t)).

B c can literally be read as “the probability that c is true”.

Example 3 (continued). The epistemic clauses of width
w = 1 are B x, B y, B¬x, B¬y; the first two are positive,
the last two are not. For w = 2, the epistemic clauses are
B(x ∨ y), B(¬x ∨ ¬y), B(x ∨ ¬y), and B(y ∨ ¬x); only the
first one is positive.
Consider b defined by b(s00) := 1

2 , b(s01) := 1
4 , and

b(s10) := 1
4 . For κ := B(x ∨ y), we have κ(b) =

1
2 × 0 + 1

4 × 1 + 1
4 × 1 = 1

2 , and for κ := B¬y, we
have κ(b) = 1

2 × 1 + 1
4 × 0 + 1

4 × 1 = 3
4 .

4.1 Projections
Given a set of epistemic features, our aim is to represent
policies as mappings defined over projections of belief
states onto these features. Importantly, we only consider
policies defined over (or restricted to) a finite set of belief
states (e.g., all those reachable by the policy up to a certain
horizon), and leave the more general case to future work.

Definition 3 (projection). Let Φ be an ordered tuple of N
epistemic features. The projection of belief state b (onto Φ)
is defined to be the vector Φ(b) := (φ(b) | φ ∈ Φ) ∈ RN .

In general, the projection of a belief state onto a set of
epistemic features is lossy. However, as our experiments
show (Section 6), features of small width will in general

4We use Latin letters for state features and formulas, and Greek letters
for epistemic features and formulas.

be enough for unambiguously representing optimal policies
over a finite subset of the belief space, for natural sets of
state features on natural problems.

Definition 4 (projectable). Let B be a finite set of belief
states, p : B → P(A) be a nondeterministic policy defined
on B, and Φ be a set of epistemic features. Then p is said to
be projectable onto Φ if there is a function π : {Φ(b) | b ∈
B} → P(A) satisfying ∀b ∈ B : ∅ ≠ π(Φ(b)) ⊆ p(b).

In words, a policy is projectable if it can be faithfully
represented by a function of the epistemic projection of the
belief states, possibly at the price of breaking ties between
actions arbitrarily. Note that if we are representing the
optimal policy p∗, breaking ties between actions does not
hinder optimality, since all actions are optimal at all belief
states/histories.
Projectability can be straightforwardly decided in time
polynomial in the numbers of belief states, states, epistemic
features, and actions.

Example 4 (continued). For w = 1, we have (B x)(b) =
(B y)(b) = (B¬x)(b) = (B¬y)(b) = 1

2 for b ∈
{bunif , b=, b ̸=}, hence

Φ∨,1
F (bunif) = Φ∨,1

F (b=) = Φ∨,1
F (b̸=) = (

1

2
,
1

2
,
1

2
,
1

2
).

Hence p cannot be projected onto Φ∨,1
F , since it prescribes

different sets of actions for bunif and b ̸=, which have the
same projection onto Φ∨,1

F .
On the other hand, p is projectable onto Φ∧,+,1

F ∪Φ∧,+,2
F =

{B x,B y,B(x ∧ y)}, since the value v3 of the third feature
is already different on all three belief states (it is 1

4 on
bunif , 1

2 on b=, and 0 on b̸=). Hence we can define (for
instance) π((v1, v2, v3)) = {switchx} for v3 < 1

8 , and
π((v1, v2, v3)) = {check=, noop} for 1

8 ≤ v3. Another
projection (which breaks ties) is given by π′((v1, v2, v3)) =
{switchx} for v3 < 1

8 , π′((v1, v2, v3)) = {check=} for
1
8 ≤ v3 < 3

8 , and π′((v1, v2, v3)) = {noop} for 3
8 < v3.

Observe that these definitions use only the value of the third
feature, and hence p is also projectable onto Φ∧,+,2

F alone.

Obviously, projectability depends on the set of epistemic
features. The following results explore this dependency.

Proposition 1. Let B be a finite set of belief states, p : B →
P(A) be a nondeterministic policy defined on B, and F
be a set of state features. Let w < |F | be a nonnegative
integer. If p is projectable onto Φ∨,w

F (resp. Φ∧,w
F ), then it

is projectable onto Φ∨,w+1
F (resp. Φ∧,w+1

F ).

Proof. This comes from the fact that the value of an
epistemic clause (resp. term) of width w can be retrieved
from the values of epistemic clauses (resp. terms) of width
w. Indeed, for a propositional term t and a belief state b,
we have (B t)(b) = (B(t∧ f))(b) + (B(t∧¬f))(b), for an
arbitrary state feature f ∈ F . For a propositional clause c,
writing t for a term equivalent to the negation of c, we have
(B c)(b) = 1 − (B t)(b) = 1 −

(
(B(t ∧ f))(b) + (B(t ∧



¬f))(b)
)

for an arbitrary state feature f ∈ F , and hence
(B c)(b) = −1 + (B(c ∨ ¬f))(b) + (B(c ∨ f))(b).

Proposition 2. Let F be an ordered set of n state features,
and assume that the function F : S → Rn defined by
F (s) := (f(s) | f ∈ F ) is injective. Then any policy
over a finite set B of belief states is projectable onto Φ∨,n

F

and onto Φ∧,n
F .

Proof. For epistemic terms, this follows directly from the
fact that the function b 7→ Φ∧,n

F (b) is also injective. Indeed,
the probability of each state s in b can be retrieved from
the projection as the value of the unique epistemic term of
width n satisfied by s. The reasoning is similar for clauses:
the probability of s can be retrieved as 1 − (B c)(b), with
c the unique epistemic clause of width n not satisfied by
s.

4.2 Representations
Given a finite set of belief states B, once a set of epistemic
features Φ is fixed, over which a policy p∗ is projectable,
our aim is to compute an interpretable representation of p∗,
using the epistemic features in Φ.
We view this problem as the problem of computing a
classifier for a set of labelled examples, where for each
belief state b ∈ B, the vector Φ(b) is an example, and the
set of actions p∗(b) is a set of possible labels for this vector.
To keep the approach simple, we use only single-label
classifiers, with the semantics that predicting any single
action in p∗ is correct.

Example 5 (continued). Consider again B =
{bunif , b=, b ̸=}, Φ = Φ∧,+,1

F ∪ Φ∧,+,2
F ordered as

(B x,B y,B x ∧ y), and p. Then the examples are ( 12 ,
1
2 ,

1
4 ),

( 12 ,
1
2 ,

1
2 ), and ( 12 ,

1
2 , 0), with respective sets of labels

{check=, noop}, {check=, noop}, and {switchx}.

Observe that the set of examples does not cover the whole
example space, so that the learned classifier has freedom
to generalize them. We however require it to be correct
on the given set of examples, that is, to provide an exact
representation (modulo ties between optimal actions) of the
given policy over the given set of belief states.
In principle, any classifier can be used. However, with our
goal of building interpretable representations in mind, we
will consider two classes of classifiers.
First, we call linear representation of p∗ (over B and Φ) a
matrix of real numbers {θaφ | φ ∈ Φ, a ∈ A}; the number
θaφ is called the weight of feature φ for action a. The policy
π induced by such a representation is defined for all belief
states b ∈ B by π(b) := argmaxa∈A

∑
φ∈Φ θaφ · φ(b).

Hence such representations can be seen as akin to α-
vectors, but with only one vector per action, and compactly
represented belief states (α-vectors can be seen as operating
on projections with one feature per state).
The reason why we are interested in this representation is
that it provides easy-to-interpret weights: the higher θaφ, the
more feature φ “promotes” action a, in the sense that the
higher the value of φ on b, the more likely a is prescribed

B x ∧ y ≤ 0

switchx

True

B x ∧ y ≤ 1
4

check=

True

noop

False

False

Figure 1: Decision tree representing an optimal policy in
our POMDP example, branching on epistemic features.

by the policy (all other things, namely, the value of other
epistemic features on b, being equal).
Second, we call decision tree representation of p∗ a
decision tree branching on the values of epistemic features,
and with actions at leaves. The policy π induced by such a
representation is defined to map each belief state b ∈ B, to
the action at the leaf of the (unique) branch activated by b
in the tree.
It is important to note that depending on the family of
classifiers, an exact representation of a policy needs not
always exist. For instance, a linear representation of a
policy does not exist in general (though our experiments
show that it often does), even if the policy is projectable
onto the set of epistemic features. Contrastingly, if
we do not bound the depth of trees nor the number of
occurrences of an epistemic feature along a branch, a
decision tree representation always exists, provided the
policy is projectable.

Example 6 (continued). The matrix of weights defined by
θcheck=B x∧y = 1 and θswitchxB x = 0.1 (all other weights being 0) is
a linear representation of p over B and Φ∧,+,1

F ∪Φ∧,+,2
F . The

policy π induced by this matrix indeed prescribes {switchx}
at b ̸= (with value 0.05 against 0 for noop and check=)
and {check=} at bunif and b= (with value 0.25 and 0.5,
respectively, against 0.05 for switchx and 0 for noop). This
can be interpreted as follows: the more the agent thinks it
possible that the current state satisfies x and y, the more it
should take action check=. On the other hand, the more it
thinks it possible that the current state satisfies x, the more it
should take action switchx; however, the weight associated
to the latter rule is much smaller than the one associated to
the former, so that knowing x ∧ y promotes more check=
than knowing x promotes switchx.
On the other hand, there is no linear representation of p over
B and Φ∧,+,2

F = B(x ∧ y); indeed, such representation
would necessarily give a 0 weight to all actions at b ̸=

and, hence, could only represent a policy π with π(b̸=) =
{check=, switchx, noop}.
Finally, Figure 1 depicts a decision tree representation of p
(breaking the ties in favour of check= at bunif and of noop
at b=).

Finally, executing a representation of a policy over Φ
proceeds as follows. Given a POMDP, the agent first sets



t := 0 and computes v0 := Φ(b0). Then at each timestep t,
it executes at := π(vt) and, upon receiving observation ot,
computes vt+1 := Φ(bt · atot).
Hence, like with α-vector representations, execution
requires the POMDP model (transition and observation
function) to be known. However, observe that the full
belief state needs not be computed in general. Computing
Φ(bt · atot) is a belief tracking task, which can be
performed implicitly, for instance using operations over
dynamic Bayesian networks representing the POMDP
action and observation models [4]. Still, this is of course
more costly than, for instance, following an arc in a
finite-state controller. Hence there is a tradeoff between
interpretability and efficiency of execution. Note the link
with the work on knowledge-based programs [22, 38],
which are representations of policies as programs branching
on epistemic features (similar to ours) can yield very
compact representations. Our work can indeed be seen as
one using specific forms of KBPs as a target language for
redescribing policies.

5 Computing Representations
We now present algorithms for computing epistemic
representations starting from (non epistemic) policies. We
start from a given policy p defined on the belief space,
and restrict it to a finite set B of belief states (e.g.,
those reachable in at most t steps from b0). In our
experiments, we use the (near-optimal) policy computed
from the POMDP by the off-the-shelf solver SARSOP,
which comes with a representation by α-vectors, and
restrict it to a large horizon.
We also fix a set of epistemic features. For this, we start
from a given set F of state features (it is straightforward to
define a meaningful one for practical problems). We then
fix a width w, and choose whether to use clauses and/or
terms, and whether to include negative features. These
choices induce a set of epistemic features (for instance,
Φ = Φ∧,+,2

F ).
We then proceed in two steps. First, we check whether p
is projectable onto Φ (for B). As already mentioned, this
can be done by a simple algorithm which goes through each
belief state b ∈ B in turn, and computes its projection v :=
Φ(b). If v is not mapped to a set of actions yet, then it gets
mapped to p(b); otherwise, if v is already mapped to a set
of actions A, then it gets mapped to A ∩ p(b). Finally, if
at any point a projection gets mapped to the empty set of
actions, then the instance is not projectable onto Φ. In that
case, we may, for instance, increase the width w, or include
negative features if they were excluded.
Second, if the instance is projectable, then as a by-
product of the first phase, we get a set of ordered pairs
⟨vj , Aj⟩j=1,...,m that we are going to use as examples for
a classifier.

5.1 Decision Tree Representations
For computing a representation as a decision tree, we view
the set ⟨vj , Aj⟩j=1,...,m as a training set for a learning
algorithm. For this, for each j ∈ {1, . . . ,m}, we first

Linear constraints: (j ranges over 1, . . . ,m)

1. mj ≥
∑

ϕ∈Φ ϕ(vj) · θa
ϕ + η (∀j, ∀a ∈ A \Aj)

2. mj ≥
∑

ϕ∈Φ ϕ(vj) · θa∗

ϕ (∀j, ∀a∗ ∈ Aj)

3. M · kj,a∗ +
∑

ϕ∈Φ ϕ(vj) · θa∗

ϕ ≥ mj (∀j, ∀a∗ ∈ Aj)

4.
∑

a∗∈Aj
kj,a∗ = |Aj | − 1 (∀j)

5. M ≥ η ≥ 0

Integrality constraints: kj,a∗ ∈ {0, 1} (∀j, ∀a∗ ∈ Aj)

Objective: maximize η

Figure 2: MILP for computing a linear representation.

sample an action a uniformly at random from A, so as to
build a set of ordered pairs ⟨vj , aj⟩j=1,...,m, mapping a
unique action to each vector. Such sampling is imposed
by the fact that we focus on single-label algorithms, and of
course, which action is sampled for each example impacts
the final results (in terms of size, for instance).5

It is then a standard problem to learn a decision tree from
such training set [33]. So as to get an exact representation
of the policy, we impose no maximal depth on the learnt
decision tree.

5.2 Linear Representations
Now for computing a linear representation, we propose
a formulation as a mixed-integer linear program (MILP;
indeed a 0/1 linear program). This program takes advantage
of the nondeterminism of the given policy, by choosing one
or several actions in each set Aj so that the resulting policy
is linear, if possible.
The MILP is given on Figure 2. Variables θa

φ represent
the weight θaφ of feature φ for action a; variables mj

represent the highest value of an action of Aj in vj (i.e.,
maxa∗(

∑
φ(vj) · θa

∗

φ )); and η is a nonnegative margin
variable (to be maximized).
Constraint 1 ensures that, for all j, the highest value
mj is greater than the value of all actions which are not
prescribed by the policy. Constraints 2–4 together ensure
that mj receives the greatest value of all actions which are
prescribed; for this, we use the standard trick with a “big
M” constant M and 0/1 selector variables kj,a∗ ; since, as
it turns out, the whole program is insensitive to multiplying
by a constant, M can be chosen to be any positive value.
Finally, Constraint 5 ensures that η is upper-bounded.
It is easy to see that this program is correct, in the following
sense.

Proposition 3. Let ⟨vj , Aj⟩j be a set of instances, and M
be any positive value. Then the optimal value η of the MILP
of Figure 2 is strictly positive if and only if ⟨vj , Aj⟩j has a
linear representation; moreover, in this case, the values of
variables θa

φ define such a linear representation.

5We plan to investigate multi-label algorithms in the future.



Solving a MILP is not known to be feasible in polynomial
time. As a matter of fact, we conjecture that deciding
whether a policy (given by an oracle) has a linear
representation over given sets of belief states and epistemic
features is an NP-complete problem.

6 Experiments
We now present experiments run on several standard
problems from the POMDP literature. Our goal is to
investigate to what extent our approach yields succinct
and “interpretable” representations in reasonable time;
to compare them with representations by FSCs; and to
investigate the impact of the epistemic features chosen. In
addition, we aim to investigate what epistemic width is
enough for natural benchmarks from the POMDP literature.

6.1 Experimental Protocol
Each experiment consists first in choosing a POMDP and
computing a near-optimal policy for it, using SARSOP.6

Then several methods for redescribing this policy (output
by SARSOP in an α-vector representation) are investigated:
linear, decision tree, and FSC representations. For each
method, we record the time to compute the redescription
(without including the time for solving the POMDP) and
its size: we define the size of a linear representation to be
its number of nonzero weights, and that of a decision tree
or an FSC to be its number of nodes.
Apart from SARSOP, all methods are run with our own
implementation in Python, which itself uses scipy for
solving MILPs and sklearn for computing decision trees.
The experiments were run on servers with Intel Xeon
processors, between 2.0 and 2.8 GHz and between 128 and
512 GB of RAM. For a given benchmark, they were all
run on the same server, with one core dedicated to each
computation. All computations were given a timeout of 1 h
CPU time; SARSOP was run with target precision 10−3,
with γ = 0.9. For all methods, reachable belief states were
gathered up to an horizon of 100.7 For epistemic methods,
we consider the following sets of epistemic features: Φi :=⋃i

j=1(Φ
∨,j
F ∪ Φ∧,j

F ) and Φ+
i :=

⋃i
j=1(Φ

∨,+,j
F ∪ Φ∧,+,j

F ),
for i = 1, 2, 3. So, the richest set of epistemic features
includes all epistemic clauses and terms of width 1, 2, or 3,
and the poorest includes only features of the form B f (for
all f ∈ F ).
For computing compact FSC representations, we
generalized the algorithms proposed in [13]. Indeed,
their approach, like ours, starts from a policy given by an
oracle and from a finite set of belief states, but it requires
the policy to be deterministic, and all observations to
occur with a nonzero probability after any action is taken
in any belief state. For lack of space, we do not give
the details here, but simply note that it is a rather direct
generalization of algorithm “policy2fsc” in [13]. All in
all, it comes in two variants: starting from a policy pol , it
computes an FSC representing a policy pol ′ such that, for

6https://github.com/AdaCompNUS/sarsop
7Here it was enough for always fully representing the policy

all histories h, ∅ ≠ pol ′(h) ⊆ pol(h) (non-strict variant),
or pol ′(h) = pol(h) (strict variant) holds.

6.2 Benchmarks
We tested our approach on four different families of
POMDPs, with different features (in particular, reliable or
noisy observations, fixed or combinatorial set of actions).

Wumpus. An agent must find a treasure as fast as
possible on a 2D grid, while avoiding the monsters
(Wumpuses). The agent always knows its own location and
has deterministic actions for moving by one square in the
four cardinal directions. No location can be occupied by
a treasure and a Wumpus. The treasures and Wumpuses
do not move and are at locations initially unknown, but
the agent can “smell”, which reveals whether there is a
Wumpus on one of the 4 neighboring cells. Therefore, the
agent may infer the locations of the Wumpuses by moving
around and smelling, and eventually reach a treasure.
A Wumpus POMDP is further specified by the size of the
grid, the number of Wumpuses and treasures (both known
to the agent), and whether there might be a Wumpus around
the agent in the initial state (“unsafe” instances; the initial
belief state is otherwise uniform).

Rock-Sample. A rover navigates a 2D grid containing
rocks (at known locations), each either good or bad, with
equal probability. The rover can sample a rock at its
current position, with a positive (resp. negative) reward
if it was good (resp. bad); then the rock becomes bad.
The rover can also check the status of a rock, with sensor
accuracy decreasing exponentially with its distance to the
rock. Reaching an exit (at one of known locations)
yields a positive reward. Finally, the robot can move
deterministically by one square in each cardinal direction,
and always knows its position.
A Rock-Sample POMDP is further specified by the size
of the grid and the positions of the rocks and exits. An
interesting feature of this problem is noisy observations,
which imply a large number of belief states can be reached
even on small grids.

Mastermind. Our third benchmark is Mastermind, the
famous code-breaking game. A Mastermind POMDP is
specified by the number of positions, colors, possible
repetitions in the secret code, and the number of attempts
allowed. An interesting feature of this benchmark is the
combinatorial set of actions, which grows with the size of
the instance.

Minesweeper. Finally, we used the famous Minesweeper
game. A Minesweeper POMDP is specified by the size of
the grid and the number of mines.

6.3 Results
We start with the size of the representations. Figure 3
presents the results for each family of benchmarks and
four representative approaches: a linear representation
over Φ1 (“epistemic-1-1-linear-withneg”), a decision
tree representation over Φ+

3 (“epistemic-1-2-3-1-2-3-tree-
noneg”), and an FSC computed with the strict (“fsc-

https://github.com/AdaCompNUS/sarsop
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Figure 3: Size of representations for several methods. From top-left to bottom-right: Minesweeper, Rocksample, Mastermind,
Wumpus
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Figure 4: Time (seconds) for computing representations. Left: Minesweeper. Right: Mastermind

policy2fsc-True”) or non-strict (“fsc-policy2fsc-False”)
variant. The x-axis is ordered by the number of belief states
in the considered set B.

We observe that the representations computed by all
approaches grow linearly in size with the number of belief
states. Though the size is not defined in the same manner
for all approaches, FSCs seem to yield the most compact
models, but decision trees with positive features of size up
to 3 seem to be on par, and even better on Minesweeper.

We also investigated the impact of the width of epistemic
features (not displayed for lack of space). As the width
grows, so does the number of features, and the size
of the linear representations grows substantially as well.

Moreover, eventually the MILP becomes too large and
computation fails, while decision trees and FSCs can still be
computed in reasonable time. Moreover, the decision tree
representations tend to become smaller with larger width.
This is consistent with the fact that they offer a greater
expressive power (Proposition 1) and hence, allow for more
decisive splits to be found. Finally, whether negative
features are included or not does not seem to have much
impact on the size (while restricting to positive features
obviously makes the representations easier to understand).

As concerns computational time, Figure 4 presents results
for two representative families of POMDPs. For both linear
and decision tree models, the time needed to compute our



Width = 1 Width = 1-2 Width = 1-2-3

Noneg Withneg Noneg Withneg Noneg Withneg

np nr np nr np nr np nr np nr np nr

M 0.72% 0.72% 0.72% 0.72% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

W 0.0% 2.31% 0.0% 2.31% 0.0% 0.53% 0.0% 0.53% 0.0% 0.53% 0.0% 0.0%

Table 1: Projectability and representability across epistemic settings for Mastermind and Wumpus

epistemic representations is in general of the same order of
magnitude as that required for FSCs, though the small size
of the problems do not allow to infer a definite trend.
Again, for lack of space, we do not depict results about our
methods with different epistemic widths. However, for all
families of POMDPs, the computational time required for
our representations increases with the epistemic width and
thus the number of features. This increase is much steeper
for linear representations than for decision trees, as already
evoked when analyzing the size. As concerns decision
trees, even when the set of epistemic features grows, the
trees select only a small subset of them, each used only
once. This suggests that while the tree has access to a
richer feature space, it does not necessarily require more
splits to reach an effective decision boundary. In contrast,
when fewer features are available but are used or reused
more frequently, the tree requires additional splits to refine
its decision boundaries. This, in turn, increases the number
of computational rounds needed to build a classifier that fits
the data perfectly.

Finally, we have analyzed the proportion of POMDPs that
are either not projectable (np) or projectable but not linearly
representable (nr). As Table 1 shows, there are very few
instances of np/nr, and they appear in only two benchmarks.
This indicates that, in most cases, a low epistemic width
suffices to project a policy. Moreover, a representation can
usually be computed.

7 Conclusion
We proposed an approach for redescribing POMDP policies
onto sets of epistemic features, with the goal of improving
interpretability. Our experiments show that our approach
has the potential to yield representations on par with finite-
state controllers in terms of size and computation time.
In the near future, we intend to investigate how it
scales to larger problems, in particular by using factored
representations of POMDPs. We also plan to investigate
how to enrich FSCs with epistemic features, trying to get
the best of both. Finally, our long-term objective is to
perform reinforcement learning directly on the epistemic
descriptions.
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