

Défauts ferroviaires : Vers une détection visuelle embarquée

PFIA/APIA 2025

Saša Radosavljevic, Kevin Hoarau, Alain Rivero, Sergio Rodriguez Florez et Abdelhafid El Ouardi Université Paris-Saclay, SNCF Réseau

01/06/25

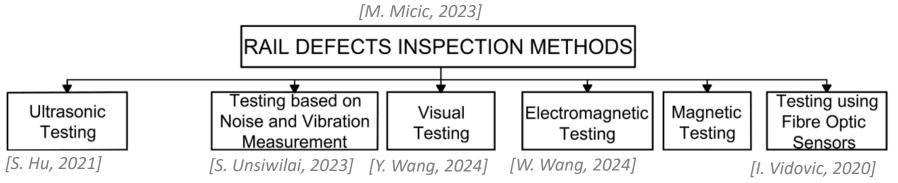
Sommaire

- Contexte
- Aperçu de l'état de l'art et problématique
- Objectifs et Méthodologie
- Défauts recherchés
- Présentation du système
- Méthodologie d'évaluation
- Évaluation de la détection embarquée
- Perspectives

Contexte: Sécurité ferroviaire

Statistiques:

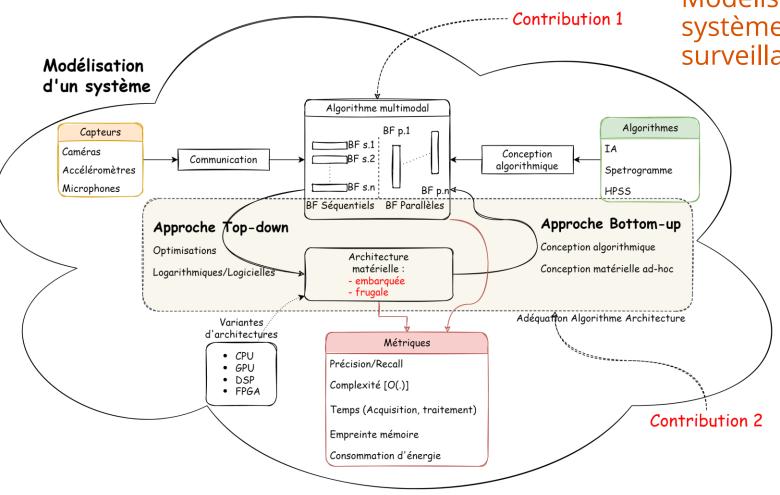
2 déraillements par jour aux USA, dont 27% dus à des défauts d'infrastructure [Arnold & Itkin, 2023].


Enjeu : méthodes de diagnostic et de détection de défauts

- Amélioration de la détection
- Suivi de l'évolution
- Intégration sur différents types de trains (commerciaux)
- Optimisation de l'occupation temporelle des sillons réservés aux engins d'inspection de l'infrastructure.
- Discussions en cours avec Alstom pour une extension aux systèmes de maintenance sur rames de métro

Accident impliquant un défaut d'éclisse

Aperçu de l'état de l'art



Méthodes non destructives

Problématique:

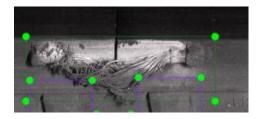
- Certaines méthodes nécessitent un environnement contraint
 Ultrasons, EMT (ElectroMagnetic Testing), Fibre optique, vitesse < 160 km/h
- Peu de mentions d'architectures embarquées
 Objectifs d'amélioration de précision
- Vision seule
 Efficace (CNNs Yolo > 92% mAP), mais sensible aux aléas environnementaux
- Vibrations/Audio
 Complémentaires mais limitées seules
 Problème d'encombrement pour un système polyvalent,
 de traitement temps-réel, de précision et de multiplicité

Objectifs et méthodologie

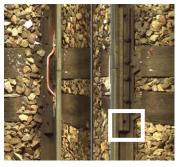
Modélisation d'une architecture d'un système multimodal embarqué pour la surveillance de l'infrastructure ferroviaire

Vue du concept

- → Contribution 1 : Méthode de fusion de données multimodale pour la détection de défauts.
- → Contribution 2 : Modèle d'architecture de calcul dédié pour l'embarqué.


Défauts recherchés

Défaut de surface


Caractérisation des défauts

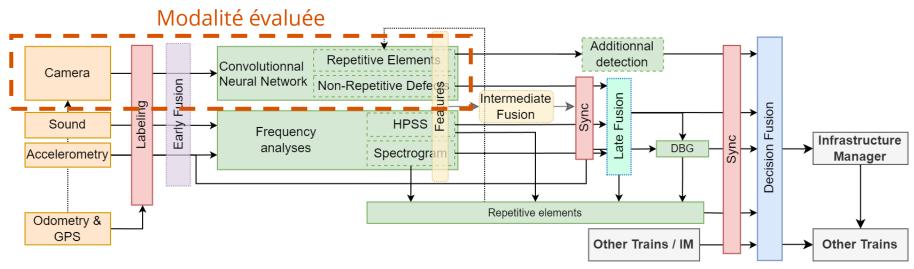
Attache défectueuse

Défaut de tresse

Ecrou manquant

Rupture d'éclisse

Rupture de rail


Classification des défauts ferroviaires ciblés

Catégorie	Type de défaut	Description	Taille (mm)
	Fissures	Microfissures ou fissures sur le rail	2 - 50
Défauts de surface	Usure excessive	Érosion anormale du champignon du rail	> 10
	Corrugation	Ondulations périodiques sur le rail	10 - 1000
	Rupture de rail	Fracture complète ou partielle du rail	50 - 12 000
Défauts structurels	Boulons manquants	Fixations absentes	-
	Rupture d'éclisse	Défaillance aux joints de rails	50 - 150
Défauts contextuels*	Objets sur la voie	Corps étrangers pouvant perturber le trafic	Variable
Defauts contextuers	Niveau de ballast	Déformation sous les traverses	-
	Défauts de contact	Anomalies dans l'interface rail-roue	-
Interaction rail-roue*	Vibrations excessives	Dégradations mécaniques révélées par l'accéléromètre	-
	Bruits anormaux	Indicateur d'un problème de freinage ou bogie	-

*Pas encore étudiés

- Grande diversité des défauts ciblés
- Variabilité de forme, taille et occurrence
- Complexité de représentation

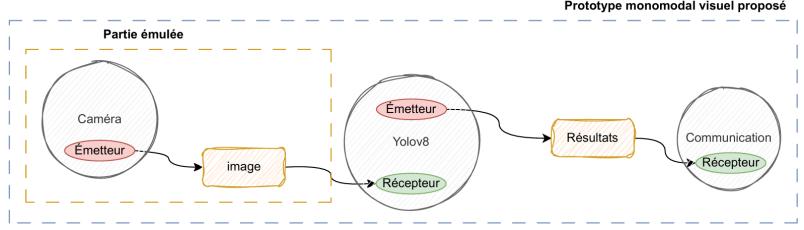
Présentation du système

Système multimodal proposé avec différents niveaux de fusions possibles

- Complémentarité des capteurs : compense les limites de chacun et meilleure gestion énergétique
- Robustesse face à l'environnement : plusieurs modes dégradés possibles
- Fusion de données : amélioration de la fiabilité des décisions et réduction des incertitudes
- Modularité du système : réduction de la charge de calcul par localité et intégrations futures simplifiées

Méthodologie d'évaluation

Montage Hardware in the Loop (HiL)


- Émulation du flux de données provenant d'un train à grande vitesse (jusqu'à 160 km/h)
- Intégration d'une cible embarquée dans la boucle

Routeur Noeud Émetteur Yolov8 Stockage Noeud Récepteur

Montage de la chaîne d'évaluation

Évaluations

- Temps de transferts
- Temps d'inférences
- Comportement inter-éléments

Chaîne de traitement de l'architecture logicielle du prototype monomodal

Évaluation de la détection embarquée

Résultats en détection pour le modèle Yolov8 nano

- Entraînements issus de deux bases de données de 10 000 images chacune
- mAP@0.5 >0,97 sauf pour les défauts de surface
- mAP@0.5 >0,93 sauf pour les joints
- → Détection améliorable par les autres capteurs

Optimisations

- Peu de perte par quantification (moins de 1%)
- D'autres optimisations à explorer (Pruning, NAS etc...)

Classe		FP32	FP16			
Classe	mAP@0.5	mAP@0.5-0.95	mAP@0.5	mAP@0.5-0.95		
Attache défectueuse	0.975	0.667	0.972	0.661		
Défaut de surface	0.715	0.4	0.723	0.341		
Boulon manquant	0.971	0.449	0.952	0.439		
Toutes classes	0.887	0.487	0.882	0.480		

Évaluation de la détection des défauts

Classe		FP32	FP16			
	mAP@0.5	mAP@0.5-0.95	mAP@0.5	mAP@0.5-0.95		
Tresse	0.962	0.557	0.962	0.552		
Cés de serrage	0.991	0.570	0.994	0.554		
Éclisse	0.992	0.676	0.994	0.673		
Joint	0.866	0.360	0.864	0.352		
Soudure	0.953	0.501	0.950	0.499		
Marque	0.937	0.528	0.938	0.523		
Toutes classes	0.950	0.532	0.950	0.526		

Évaluation de la détection des éléments de contexte

Évaluation des performances sur cible embarquée

Format	Désérialisation (ms)	Prétraitement (ms)	Inférence (ms)	Post-traitement (ms)	Temps total (ms)	Fréquence (FPS)
FP32						
Moyenne	1.25	4.07	9.06	3.12	17.50	57.1
Écart-type	0.23	0.75	0.06	0.10	1.14	3.56
Médiane	1.16	3.80	9.06	3.12	17.14	58.34
Minimum	1.07	3.64	9.01	1.73	15.45	64.72
Maximum	2.05	7.65	9.16	3.59	22.45	44.54
FP16						
Moyenne	1.22	4.01	5.36	3.10	13.69	73.0
Écart-type	0.21	0.05	0.76	0.10	1.12	5.48
Médiane	1.15	3.75	5.36	3.09	13.35	74.9
Minimum	1.05	3.58	5.31	2.85	12.79	78.18
Maximum	2.01	7.50	5.46	3.79	18.76	53.3

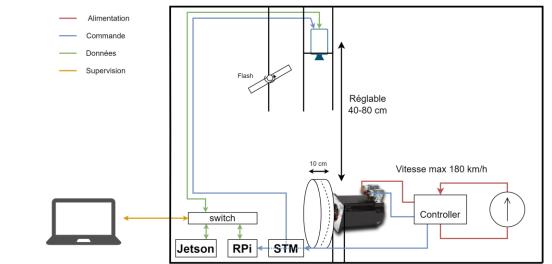
Performances de la chaîne HiL sur Nvidia Jetson Xavier (512 cœurs CUDA, 1377 MHz, 16 GB)

- Utilisation d'une tournée sur voie parisienne composée de 4416 images
- Évaluation du SDK TensorRT (2x plus rapide que PyTorch)
- Permet de traiter le flux d'une caméra seule (160 km/h = 30 FPS)
- Gain de 16 FPS entre FP32 et FP16

Perspectives

Multimodalité du système

- Création d'une base de données multimodales (Vision + Accélérométrie)
- Intégration des algorithmes des autres modalités : améliorer la détection des défauts de surface
- Étude des différents types de fusion de l'état de l'art (Fusion précoce, intermédiaire et tardive)
- → Besoin d'analyse fine de chaque modalité, données, synchronisation des capteurs


Adéquation algorithme-architecture

- Étude de la complexité calculatoire du modèle multimodal
- Découpage de la chaine de traitement sous forme de blocs fonctionnels et étude de la charge de calcul
- Analyse des méthodes d'accélération des traitements (logicielles ou matérielles)/Réécriture algorithmique
- Implémentation et évaluation du modèle sur cibles hétérogènes (GPU, FPGA)

Conception d'un banc de validation HiL

Banc HIL : multimodalité incrémentale

- Problématique d'instrumentation
 - Caméra (Calibration)
 - Éclairage (Dimensionnement)
 - Unité de calcul (Puissance, consommation)
- Hardware in the loop
 - Contrainte de vitesse d'exposition des défauts
 - Gestion de données pour le traitement
- Validation de la chaîne d'acquisition/traitement (Du capteur au calculateur)
- Multimodalité incrémentale
 - Accélérométrie
 - o Son

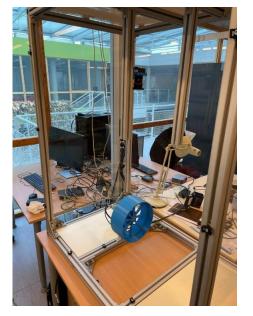
• Structure mécanique en place

Banc SATIE

DALSA LINEA LA-GM-02K05A

Freq ligne: 50 kHz, capteur 14 µm

Accéléromètre

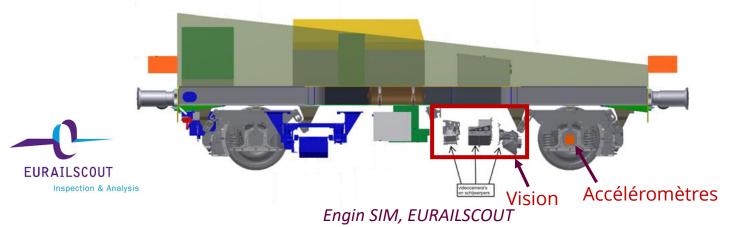

Caméra :

Accéléromètre : ASC RAIL-x15LN 2kHz

Roue bonus

accéléromètre

- Validation de la caméra
- Automate de contrôle en cours de développement



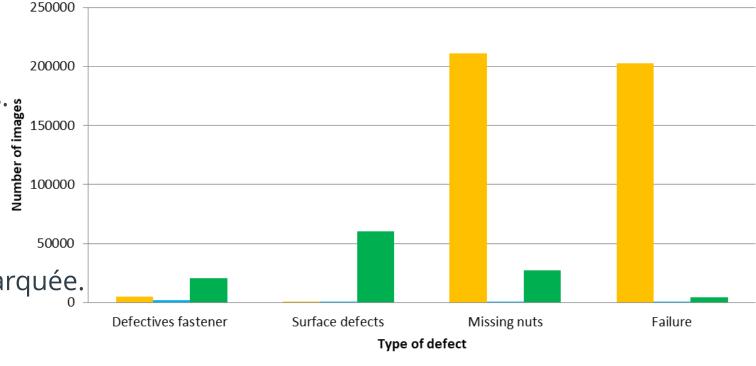
→ Preuve de concept de la modélisation HIL d'une architecture embarquée


Acquisition de données multimodales

Création d'une base de données pour l'évaluation

- Représentation des défauts pour deux modalités (Vision et accélérométrie)
 - → Complémentarité/redondance des informations
 - → Equilibre des données (Apprentissage ciblé)
- Définition d'une base de données de validation de détection des défauts (vers validation HIL)
- Corrélation des données multimodales en cours

Exemple de corrélation de données entre image et vibrations


Frequency [Hz]

Conclusion

- Nécessité de plus et de meilleures données
- Multimodalité avec accéléromètres en cours de développement

Perspectives:

- Économique : Réduction des coûts.
- Sociétal : Sécurité renforcée.
- Environnemental : Durabilité.
- Scientifique : Avancées en IA embarquée.

Industriel:

■ Defects presented to the operator ■ Defects validated by the operator ■ Defects detectd by the new system

Potentiel d'application à l'échelle mondiale

Défauts ferroviaires : Vers une détection visuelle embarquée

Merci pour votre attention!

Des questions?

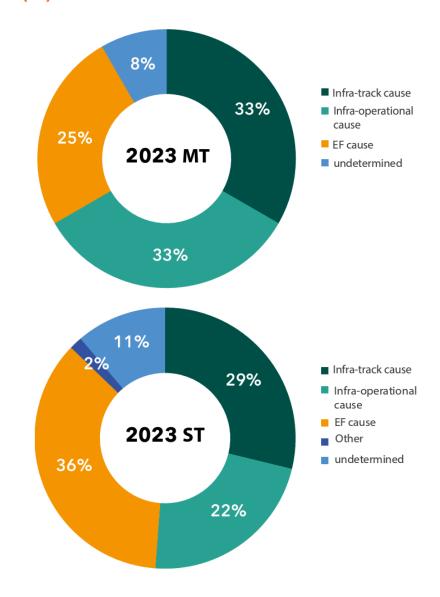
Contact: sasa.radosavljevic@ens-paris-saclay.fr

Annexe – Evaluation CNN (640 px)

	AP@0.5 (%)							mAP	Param (M) /		
\mathbf{Model}	fastener	surface	nut	braid	clamp	fishplate	seal	weld	mark	All	$FLOPs^{\cdot}(G)$
Yolov5nu D	97.1	67.1	95.2	-	-	-	-	-	-	86.4	, ,
Yolov5nu C	-	-	-	97.3	94.0	98.9	87.5	95.0	93.8	94.4	$2.6 \ / \ 7.8$
Yolov5nu D+C	87.4	60.1	35.6	90.5	57.4	93.2	81.3	91.1	88.1	76.1	
Yolov8n D	97.0	66.6	94.7	-	-	-	-	-	-	86.1	
Yolov8n C	-	-	-	97.4	94.8	98.8	89.3	94.7	93.7	94.8	3.1 / 8.9
Yolov8n D+C	87.2	56.1	33.2	90.6	56.5	93.3	82.9	91.9	89.6	76.3	
Yolov9t D	96.9	68.2	94.7	-	-	-	-	-	-	86.6	
Yolov9t C	-	-	-	97.4	97.1	99.1	89.0	95.4	93.5	95.3	2.1 / 8.5
Yolov9t D+C	88.6	56.9	33.0	91.2	64.7	93.4	82.8	90.8	88.0	76.6	
Yolov10n D	97.4	68.3	94.5	-	-	-	-	-	-	86.7	
Yolov10n C	-	-	-	95.0	91.3	98.6	83.0	93.9	93.7	92.6	2.7 / 8.7
Yolov10n D+C	86.9	58.5	40.2	89.1	54.5	92.6	79.5	91.3	86.8	75.5	
Yolov11n D	97.1	69.9	95.5	-	-	-	-	-	-	87.5	
Yolov11n C	-	-	-	96.7	96.2	98.8	89.2	94.3	93.8	94.8	$2.6 \ / \ 6.6$
Yolov11n D+C	87.9	59.8	34.6	90.1	60.3	93.1	81.7	91.3	88.7	76.4	
SSD-MobileNet-V2-FPNlite D	96.99	59.22	92.24	-	-	-	-	-	-	82.8	
SSD-MobileNet-V2-FPNlite C	-	-	-	92.25	89.53	96.07	81.79	89.92	84.72	89.0	$4.3 \ / \ 6.82$
SSD-MobileNet-V2-FPNlite D+C	84.26	47.07	27.51	84.04	45.31	88.57	63.02	87.02	79.81	67.40	
EfficientDet-D1 D	70.78	47.52	22.73	-	-	-	-	-	-	47.01	
EfficientDet-D1 C	-	-	-	75.2	48.33	71.84	47.2	73.38	53.98	61.65	$6.6 \ / \ 14.91$
EfficientDet-D1 D+C	67.87	41.99	9.67	64.76	17.80	59.79	33.16	37.00	48.65	42.30	
Yolov5nu P	-	72.9	-	-	-	-	97.6	-	-	85.7	2.5 / 7.1
Yolov8n P	-	72.8	-	-	-	-	99.5	-	-	86.2	3.0 / 8.1
Yolov9t P	-	73.4	-	-	-	-	99.5	-	-	86.5	1.9 / 7.6
Yolov10n P	-	68.8	-	-	-	-	97.4	-	-	83.1	2.7 / 8.2
Yolov11n P	-	69.5	-	-	-	-	99.5	-	-	84.5	2.6 / 6.3
EfficientDet-D1	-	46.77	-	-	-	-	100	-	-	67.01	6.6 / 14.91
SSD-MobileNet-V2-FPNlite	-	50.87	-	-	-	-	99.29	-	-	62.5	$4.3 \ / \ 6.82$

Annexe - Data acquisition

Wheel-rail contact test bench, University of Huddersfield


EURAILSCOUT

RAILENiUM

Annexe - Stats

Breakdown of causes of derailments on one side of main track (MT) and on the other side of service track (ST)

