FORMALIZATION OF FAIR PLAY STRATEGIES FOR EPISTEMIC GAMES IN STRATEGY LOGIC

Louis Nicolas¹, Gregory Bonnet¹, Alexandre Niveau¹ and Bruno Zanuttini¹

¹Université Caen Normandie, ENSICAEN, CNRS, Normandie Univ, GREYC UMR 6072, F-14000 Caen, France

louis.nicolas@unicaen.fr

Context

- Winning: not the only goal of a game (learning, storytelling)
- Our goal : formalize complex strategies not based on winning
- Fair play: a strategy that is not only based on winning
- Focus: formalization of fair play strategies using logic

Example

Simplified game of the President

- 52 cards divided equally among players
- Winning condition : a player discards all their cards
- ► Round begins : current player can play :
 - Single card
 - Pair of cards
 - Triple of cards
 - Quadruple of cards
- Subsequent players play the same type of hand with value above the previous (i.e. you can only play pairs during a round if the first hand was a pair)
- Round ends when no player can play

Example

Alice plays along a strategy

- ▶ Bob desires to play a pair of 7 and plays after Alice
- Alice starts the round, she plays a pair of 6 when she could have played a single 6

Is this strategy fair play?

- Intuitively yes because Bob will be able to play what he wanted.
- But if Alice did not know Bob's intentions, she would have been just playing for her, meaning it would have been not particularly fair play
- If Alice knew Bob's intentions and would have played a single 6, it would be not fair play

1. Introduction

- 2. Modeling strategies in literature
- 3. Formalization of fair play strategies
- 4. Conclusion

1. Introduction

2. Modeling strategies in literature

- Formalization of fair play strategies
- 4. Conclusion

Strategy Logic (Mogavero et al., 2010)

Strategy : Function $\sigma: H \to \mathcal{A}$ where H : set of histories and \mathcal{A} : set of actions. **Strategy logic operators** :

- ▶ All standard logic operators \neg , \land , \lor , \Rightarrow , \Leftrightarrow
- ▶ LTL operators $X, F, G, U \dots$
- ▶ Quantifiers over strategies $\langle\!\langle x \rangle\!\rangle$, [[x]]
- ightharpoonup Binding operators (a, x)

Example of a formula in Strategy Logic:

$$\mathcal{G}, \chi, w \models \langle\!\langle x \rangle\!\rangle(a,x)[[y]](b,y)F \mathsf{wins}_a$$

Formalization of mental states (Adam et al., 2009)

Modal operators are used to reason about the mental states of the agents in a game.

- $ightharpoonup K_a(\varphi)$: the agent a knows φ
- ▶ $\mathsf{Des}_a(\varphi)$: the agent a desires φ
- ▶ Prob $_a(\varphi)$: φ is plausible for the agent a, i.e. for a, φ is true in a majority of possible worlds

We note with a hat (e.g. $\widehat{\operatorname{Des}}_a(\varphi)$) the dual of these operators, e.g. $\widehat{\operatorname{Des}}_a(\varphi)$ means φ is compatible with the desires of a.

1. Introduction

- 2. Modeling strategies in literature
- 3. Formalization of fair play strategies
- 4. Conclusion

Concurrent game structure model

A concurrent game structure is defined by a tuple

$$\mathcal{G}=(N,\Phi,\mathcal{A},W,\bar{w},T,\{\sim_a\}_{a\in N},\{\mathscr{D}_a\}_{a\in N},\{\mathscr{P}_a\}_{a\in N},U,g,V) \text{ where: }$$

- $lackbox{ }N$: set of players, Φ : set of atomic propositions, \mathcal{A} : set of actions
- $lackbox{W}$: set of states, \bar{w} : initial state, T : set of terminal states
- $lackbox{}\sim_a,\mathscr{D}_a,\mathscr{P}_a$: semantics for $K_a,\mathsf{Des}_a,\mathsf{Prob}_a$ for each player $a\in N$
- $lackbox{$lackbox{\blacktriangleright}}\ U:W imes\prod_{i\in N}A^i o W$: update function
- $lackbox{\hspace{0.1cm}$} g:N
 ightarrow 2^W$: function that give the winning states for each agents
- $ightharpoonup V:W o 2^\Phi$: valuation function

Non-blocking fair play strategies - Example

Non-blocking strategy: Strategy where the player does not block its opponent **Example**:

- Alice knows Bob desires to play a pair of 7 and plays after Alice
- ► Alice starts the round, she plays a pair of 6
- Alice could have played a single 6

What makes this move fair play?

- ► Alice has the **knowledge** of Bob's **desires**
- Alice's strategy does not block Bob's desires
- ► There was an alternative strategy that would have blocked Bob's desires
- Doing this strategy does not go against her desires

Non-blocking strategies - Formalization

\boldsymbol{x} is a non-blocking strategy of \boldsymbol{a} towards \boldsymbol{b}

$$\mathcal{G}, \chi, w \models K_a(\mathsf{Des}_b(\varphi))$$

$$\land \langle\!\langle y \rangle\!\rangle (b, y) (a, x) \varphi$$

$$\land \langle\!\langle x' \rangle\!\rangle (a, x') [[y]] (b, y) \neg \varphi$$

$$\land \widehat{\mathsf{Des}}_a(\varphi)$$

Non-blocking strategies - Limitations

New scenario:

- Now 3 players : Alice, Bob and Charles
- ► Alice wants to be non-blocking for Charles
- Alice has a double 6, Bob has a single 8, Charles has a double 9
- Charles wants to play at least a card
- Alice knows everyone's game and Charles' desires
- Charles thinks Alice will play a double 6

Playing a single 6 or a double 6 for Alice **are both non-blocking for Charles**Playing a single 6 however would **surprise** Charles because it was the most **plausible move for him**

Non-surprising strategies - Example

Non-surprising strategy: Strategy where the player plays along what is the most plausible move for its opponent

Example:

- Alice knows Charles thinks Alice will play a pair of 6
- Alice plays a pair of 6

What makes this move fair play?

- Alice knows what Charles think will happen
- She plays according to Charles' assumptions
- ► She does not play against her desires

Non-surprising strategies - Formalization

x is a non-surprising strategy of a towards b

$$\begin{split} \mathcal{G}, \chi, w &\models K_a \big(\neg K_b(\varphi) \land \mathsf{Prob}_b(\varphi) \big) \\ &\land \Big[(a, x) \langle\!\langle y \rangle\!\rangle (b, y) \varphi \lor \left(\begin{array}{c} [[x']](a, x') [[y]](b, y) \neg \varphi \\ \land \\ (a, x) [[y]](b, y) K_b (\neg \varphi) \end{array} \right) \Big] \\ &\land \widehat{\mathsf{Des}}_a(\varphi) \end{split}$$

- 1. Introduction
- 2. Modeling strategies in literature
- Formalization of fair play strategies
- 4. Conclusion

Conclusion

Recap:

- Strategy Logic for formalizing strategies
- Modal operators to formalize mental states
- Non-blocking strategies formalization not to block the opponent's desires
- Non-surprising strategies formalization to play according the opponent's assumptions about our moves

Next steps:

- ► Test formalization on hand made strategies
- Implement President and test on real play
- Synthesize fair-play strategies
- Extending the formalization to more than two players

The end

[thank you]

Any Questions?

louis.nicolas@unicaen.fr