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Upper Confidence bound applied to 
Trees (UCT) and Monte Carlo Tree 
Search (MCTS)
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Monte Carlo Tree Search (MCTS)
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Represent a game as a tree.

Each node represents a state of the game (with its value) and the directed edges 

are moves done by players.

Explore the tree to find the optimal play.



Monte Carlo Tree Search (MCTS)

5
https://en.wikipedia.org/wiki/Game_tree#/media/File:Tic-tac-toe-game-tree.svg



Monte Carlo Tree Search (MCTS)
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A. Santos, P. A. Santos and F. S. Melo, "Monte Carlo tree search experiments in 
hearthstone," 2017 IEEE Conference on Computational Intelligence and Games (CIG)



Upper confidence bound applied to Trees (UCT)

7
jyopari, MCTS

●    = number of victories
●    = number of time the node has been visited
●    = number of time the parent node has been visited

https://jyopari.github.io/MCTS.html


Deep MCTS : AlphaZero
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Deep MCTS : AlphaZero
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Replace simulation by a single neural network with two heads :

- a value head :

- a policy head : 

New formula :

with 



AlphaZero : learning through self play

We then train the network by memorizing the training examples 

with       being the MCTS policy vector,    the end result of the game, and the loss :
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Stochastic AlphaZero

Chance nodes are added in between min and max player to represent the 

environment/randomness.

Can greatly increase the branching factor depending on the number of random 

possibilities.
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Carcassonne
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Carcassonne
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Turn by turn, board constructing game

3 phases :

- draw and place a random tile on the board
- place meeple (or not) on the last tile
- count points / retract meeples 

Goal : build (complete) roads, cities, churches, …

while possessing them to earn points



Carcassonne
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Important informations :

- possible tile positions : 35*35*4 = 4900 (theoretical)

- in practice only a dozen possible action maximum 

- possible meeple placement : 9 (if last tile known)

- 73 tiles (in the original game) to draw from the deck

↪ high branching factor, with 5*10^40 possible states



Carcassonne : network input

Represent a state of the game as 22 channels of 35*35*9:

- 5 channels for the board (cities, roads, monasteries, fields and shields)

- 5 channels for the next tile (same)

- 2*4 channels for placed meeples (number of players times type of terrain)

- 2 channels for free meeples

- 2 channels for phase 
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Current work and future 
improvements
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Parallelization

Many different types of parallelization for MCTS. Some not applicable to 

AlphaZero.

Can accelerate training by playing games in parallel and producing the data at 

the same time.

Same model between epochs, so no data sharing issues.
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Further improvements : MuZero

Model-based algorithm : transform an observation into a hidden state to only 

retain important informations. Navigate the “tree” with hidden states and 

hypothetical actions.

Useful for complex games, with complex mechanics that are hard/long to 

compute. 
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Further improvements : MuZero

At every step the model predicts the policy, the value function and the 

immediate reward of the hidden states through 3 functions :

- the representation function : 

- the prediction function : 

- the dynamics function :
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Further improvements : MuZero

20
Schrittwieser, J., Antonoglou, I., Hubert, T. et al. Mastering Atari, Go, chess and shogi by 
planning with a learned model. Nature 588, 604–609 (2020)



Further improvements : MuZero

The policy, the value function and the immediate reward are the three 

quantities that are trained to be predicted correctly through a replay buffer, 

they try to approximate the following quantities :

-

-  

-                      ,   where 

-  

-                           ,   where             is the immediate reward
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Further improvements : MuZero
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Schrittwieser, J., Antonoglou, I., Hubert, T. et al. Mastering Atari, Go, chess and shogi by 
planning with a learned model. Nature 588, 604–609 (2020)



Further improvements : stochastic MuZero

Introduces after-states, to act as chance nodes (after an action is done, in 

between two states).

Only need to learn after-states and chance outcomes in order to generalize to 

stochastic games.
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Upper Confidence bound for Directed acyclic graph 
(UCD)
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Wikipedia, Directed acyclic graph

https://en.wikipedia.org/wiki/Directed_acyclic_graph


Upper Confidence bound for Directed acyclic graph 
(UCD)
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Need to adapt the UCT 

algorithm to DAGs.

For example the 

backpropagation is no 

longer trivial : if left as is, 

we may find ourselves with 

a lack of information.
Cazenave, Tristan; Méhat, Jean; Saffidine, Abdallah (2012), UCD : Upper confidence 
bound for rooted directed acyclic graphs, Knowledge-Based Systems



Upper Confidence bound for Directed acyclic graph 
(UCD)
On the other hand if we 

update all stats from every 

possible path leading to a 

leaf, we end up with false 

conclusions.
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Cazenave, Tristan; Méhat, Jean; Saffidine, Abdallah (2012), UCD : Upper confidence 
bound for rooted directed acyclic graphs, Knowledge-Based Systems



Upper Confidence bound for Directed acyclic graph 
(UCD)

The solution found is an in-between : we backpropagate through the whole path 

plus all the possible path for a distance d above the leaf.
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Upper Confidence bound for Directed acyclic graph 
(UCD)

Problem : UCD made for transpositions and not for imperfect information 

games. The DAG is not adapted for backpropagating impossible nodes/path.

Solution : we keep a tree as well as a DAG linked together by a transposition 

function; we navigate in the tree during the selection process (to avoid 

impossible states) and we use the DAG when we need informations.
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