
Perfect information stochastic
game playing : study of
Carcassonne
Aymeric Behaegel, Quentin Cohen Solal1, Tristan Cazenave 1

1 : LAMSADE, Paris
Dauphine

1. Monte Carlo Tree Search and UCT

2. AlphaZero and randomness

3. Carcassonne

4. Current work and possible improvements

5. References
2

Upper Confidence bound applied to
Trees (UCT) and Monte Carlo Tree
Search (MCTS)

3

Monte Carlo Tree Search (MCTS)

4

Represent a game as a tree.

Each node represents a state of the game (with its value) and the directed edges

are moves done by players.

Explore the tree to find the optimal play.

Monte Carlo Tree Search (MCTS)

5
https://en.wikipedia.org/wiki/Game_tree#/media/File:Tic-tac-toe-game-tree.svg

Monte Carlo Tree Search (MCTS)

6
A. Santos, P. A. Santos and F. S. Melo, "Monte Carlo tree search experiments in
hearthstone," 2017 IEEE Conference on Computational Intelligence and Games (CIG)

Upper confidence bound applied to Trees (UCT)

7
jyopari, MCTS

● = number of victories
● = number of time the node has been visited
● = number of time the parent node has been visited

https://jyopari.github.io/MCTS.html

Deep MCTS : AlphaZero

8

Deep MCTS : AlphaZero

9

Replace simulation by a single neural network with two heads :

- a value head :

- a policy head :

New formula :

with

AlphaZero : learning through self play

We then train the network by memorizing the training examples

with being the MCTS policy vector, the end result of the game, and the loss :

10

Stochastic AlphaZero

Chance nodes are added in between min and max player to represent the

environment/randomness.

Can greatly increase the branching factor depending on the number of random

possibilities.

11

Carcassonne

12

Carcassonne

13

Turn by turn, board constructing game

3 phases :

- draw and place a random tile on the board
- place meeple (or not) on the last tile
- count points / retract meeples

Goal : build (complete) roads, cities, churches, …

while possessing them to earn points

Carcassonne

14

Important informations :

- possible tile positions : 35*35*4 = 4900 (theoretical)

- in practice only a dozen possible action maximum

- possible meeple placement : 9 (if last tile known)

- 73 tiles (in the original game) to draw from the deck

↪ high branching factor, with 5*10^40 possible states

Carcassonne : network input

Represent a state of the game as 22 channels of 35*35*9:

- 5 channels for the board (cities, roads, monasteries, fields and shields)

- 5 channels for the next tile (same)

- 2*4 channels for placed meeples (number of players times type of terrain)

- 2 channels for free meeples

- 2 channels for phase

15

Current work and future
improvements

16

Parallelization

Many different types of parallelization for MCTS. Some not applicable to

AlphaZero.

Can accelerate training by playing games in parallel and producing the data at

the same time.

Same model between epochs, so no data sharing issues.

17

Further improvements : MuZero

Model-based algorithm : transform an observation into a hidden state to only

retain important informations. Navigate the “tree” with hidden states and

hypothetical actions.

Useful for complex games, with complex mechanics that are hard/long to

compute.

18

Further improvements : MuZero

At every step the model predicts the policy, the value function and the

immediate reward of the hidden states through 3 functions :

- the representation function :

- the prediction function :

- the dynamics function :

19

Further improvements : MuZero

20
Schrittwieser, J., Antonoglou, I., Hubert, T. et al. Mastering Atari, Go, chess and shogi by
planning with a learned model. Nature 588, 604–609 (2020)

Further improvements : MuZero

The policy, the value function and the immediate reward are the three

quantities that are trained to be predicted correctly through a replay buffer,

they try to approximate the following quantities :

-

-

- , where

-

- , where is the immediate reward

21

Further improvements : MuZero

22
Schrittwieser, J., Antonoglou, I., Hubert, T. et al. Mastering Atari, Go, chess and shogi by
planning with a learned model. Nature 588, 604–609 (2020)

Further improvements : stochastic MuZero

Introduces after-states, to act as chance nodes (after an action is done, in

between two states).

Only need to learn after-states and chance outcomes in order to generalize to

stochastic games.

23

Upper Confidence bound for Directed acyclic graph
(UCD)

24
Wikipedia, Directed acyclic graph

https://en.wikipedia.org/wiki/Directed_acyclic_graph

Upper Confidence bound for Directed acyclic graph
(UCD)

25

Need to adapt the UCT

algorithm to DAGs.

For example the

backpropagation is no

longer trivial : if left as is,

we may find ourselves with

a lack of information.
Cazenave, Tristan; Méhat, Jean; Saffidine, Abdallah (2012), UCD : Upper confidence
bound for rooted directed acyclic graphs, Knowledge-Based Systems

Upper Confidence bound for Directed acyclic graph
(UCD)
On the other hand if we

update all stats from every

possible path leading to a

leaf, we end up with false

conclusions.

26
Cazenave, Tristan; Méhat, Jean; Saffidine, Abdallah (2012), UCD : Upper confidence
bound for rooted directed acyclic graphs, Knowledge-Based Systems

Upper Confidence bound for Directed acyclic graph
(UCD)

The solution found is an in-between : we backpropagate through the whole path

plus all the possible path for a distance d above the leaf.

27

Upper Confidence bound for Directed acyclic graph
(UCD)

Problem : UCD made for transpositions and not for imperfect information

games. The DAG is not adapted for backpropagating impossible nodes/path.

Solution : we keep a tree as well as a DAG linked together by a transposition

function; we navigate in the tree during the selection process (to avoid

impossible states) and we use the DAG when we need informations.

28

References

29

References

● M. Świechowski and T. Tajmajer, "A Practical Solution to Handling Randomness and Imperfect

Information in Monte Carlo Tree Search," 2021 16th Conference on Computer Science and Intelligence
Systems (FedCSIS),2021

● Silver, David et al. “Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning

Algorithm.” ArXiv abs/1712.01815 (2017): n. pag.

● Czech, Johannes et al. “Monte-Carlo Graph Search for AlphaZero.” ArXiv abs/2012.11045 (2020):

n. pag.

● Schrittwieser, J., Antonoglou, I., Hubert, T. et al. Mastering Atari, Go, chess and shogi by planning

with a learned model. Nature 588, 604–609 (2020). https://doi.org/10.1038/s41586-020-03051-4

● Antonoglou, Schrittwieser et al. “Planning in Stochastic Environments with a Learned Model”,

International Conference on Learning Representations, 2022

30

